政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143784
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113311/144292 (79%)
造訪人次 : 50927339      線上人數 : 911
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/143784


    題名: 基於強化學習下的餐廳機器人— 接待與送餐之應用
    Restaurant Robot Based on Reinforcement Learning—Application of Reception and Delivery
    作者: 鄭玉筠
    Cheng, Yu-Yun
    貢獻者: 蔡子傑
    Tsai, Tzu-Chieh
    鄭玉筠
    Cheng, Yu-Yun
    關鍵詞: 強化學習近端策略優化(RL-PPO)演算法
    馬可夫決策過程
    局部觀測
    餐廳機器人
    接待與送餐
    Reinforcement Learning—Proximal Policy Optimization Algorithm
    Markov Decision Process
    Partially Observable
    Robot of Restaurant
    Reception and Delivery
    日期: 2023
    上傳時間: 2023-03-09 18:26:04 (UTC+8)
    摘要: 台灣在2020年人口首度呈現負成長,少子化已經成為產業人力缺口的重大問題;又或是有高度傳染性疾病流行時,人與人之間可能也不適合有太多接觸。餐飲服務業面臨上述的問題,若是能導入自動化AI系統,使用服務機器人來取代部分的人力,負責接待與送餐任務,就可以減輕人力不足與減少傳染性疾病的感染風險。餐廳若是有多個機器人的服務系統,透過工作排程,可以同時去完成不同的任務,不但可以減少人力運用,也可以具有較高的顧客滿意度的優勢。
    本文提出基於強化學習近端策略優化(RL-PPO)演算法的多個機器人服務系統的訓練框架,探索用於建構能夠減少人力的自動智慧餐廳的可能性。系統整合OpenAI Gym與Pygame 做為模擬環境,運用RL-PPO演算法的技術,並在最終階段類比成效。在本文中,我們對餐廳服務機器人系統進行建立模型,我們是以增加服務顧客的數量與減少顧客等待的時間為評估指標,而這與路徑規劃的距離會有正相關,在這樣的框架下,還可以進一步優化其他的指標:例如顧客的滿意度、員工每工時的勞動生產率等。我們針對這二項評估指標優化,因為問題涉及順序決策,同時也需要實時決策,所以我們將二項服務任務建模為馬可夫決策過程,採用RL-PPO演算法來解決該問題。
    本文模擬系統針對服務顧客數量與顧客等待時間二項指標的優化,證明經過本系統RL-PPO演算法架構下訓練的機器人系統,只需要餐廳的局部觀測資訊,通過自我學習,即可以維持餐廳服務機器人的服務效能。意即在餐廳臨時因應服務硬體佈局有所調整時,餐廳機器人從事接待與送餐工作時,也不需要更改系統或架構,餐廳機器人還是可以運作。這樣的框架系統,更具有靈活性、泛化性與穩定性,可以做為未來次世代的餐廳服務機器人系統的應用。
    In 2020, Taiwan`s population showed negative growth for the first time, and the declining birth rate has become a major problem for the industry`s manpower shortage; or when there are highly contagious diseases, it may not be suitable for too much contact between people. The catering service industry is facing the above-mentioned problems. If an automated AI system can be introduced with service robots for reception and delivery tasks, the shortage of manpower and the risk of infection of epidemic diseases can be alleviated. If a restaurant has such a service system with multiple robots, different tasks can be completed at the same time through appropriate job scheduling. Thus it can not only reduce the use of manpower, but also have the advantage of higher customer satisfaction.
    This thesis proposes a training framework for the multiple robot service system based on the Reinforcement Learning—Proximal Policy Optimization (RL-PPO) algorithm. It explores the possibility of constructing an automatic smart restaurant that can reduce manpower. We use OpenAI Gym and Pygame as the simulation environment. We build a model for the restaurant service robot system to evaluate the performance. The waiting time of customers versus number of serving customers is considered, which will be positively correlated with the robot working distance of path planning. Other indicators can also be further optimized, such as customer satisfaction, employee productivity per working hour, etc. In order to optimize the two evaluation indicators, sequential and real-time decision-makings are required. We model it as a Markov Decision Process, and use the RL-PPO algorithm to solve this problem.
    We also prove that the robot system trained under the RL-PPO algorithm framework of this system only needs part of the observation information of the restaurant, and can maintain the efficiency through robot self-learning. That is to say, when the restaurant temporarily adjusts the service hardware layout, the restaurant robot can still operate without changing the system. Such a framework system is more stable, flexible and generalizable, and can be used as an application in the next generation of restaurant service robot systems in the future.
    參考文獻: [1] A. M. Turing (1950). Computing Machinery and Intelligence. Mind, New Series, 59(236), 433-460.
    [2] David Silver (2016). Tutorial: Deep Reinforcement Learning
    [3] Chathurangi Shyalika, Thushari Silva, Asoka Karunananda (2020). Reinforcement Learning in Dynamic Task Scheduling: A Review. SN Computer Science, 1(6), 306
    [4] Byrd, K.、Fan, A. et al. (2021). Robot vs human: expectations, performances and gaps in off-premise restaurant service modes. International Journal of Contemporary Hospitality Management, 11(33), 3996-4016
    [5] Jun Yang, Xinghui You et al. (2019). Application of reinforcement learning in UAV cluster task scheduling, Future Generation Computer Systems, 95, 140-148
    [6] Tingxiang Fan, Pinxin Long et al. (2020). Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. SAGE Journals
    [7] Takeshi Shimmura, Ryosuke Ichikari et al. (2020). Service robot introduction to a restaurant enhances both labor productivity and service quality. Procedia CIRP, 88, 589-594
    [8] Ruijun Yang, Liang Cheng, (2019). Path Planning of Restaurant Service Robot Based on A-star Algorithms with Updated Weights. 2019 12th International Symposium on Computational Intelligence and Design (ISCID)
    [9] Thanh Thi Nguyen, Ngoc Duy Nguyen et al. (2020). Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications. IEEE Transactions on Cybernetics (Volume: 50, Issue: 9)
    [10] Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.
    [11] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in animals. American Psychologist, 53(10), 1125-1127.
    [12] Deng, L., and Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(34), 197-387.
    [13] Min-Gyu Kim, Heeyoon Yoon et al. (2021).Investigating Frontline Service Employees to Identify Behavioral Goals of Restaurant Service Robot: An Exploratory Study. 2021 18th International Conference on Ubiquitous Robots (UR)
    [14] Prejitha.CT, Vikram Raj.N et al. (2020). Design of Restaurant Service Robot for Contact less and Hygienic Eating Experience. International Research Journal of Engineering and Technology (IRJET), 07(08), 2938-2943
    [15] OpenAI (Christopher Berner, Greg Brockman, et al. (2021). Dota 2 with Large Scale Deep Reinforcement Learning. arVix:1912.06680v1
    [16] K. Lakshmi Narayanan, et al. (2021). Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network. Multimedia Tools and Applications, doi: 10.1007/s11042-021-11264-6
    [17] Lai, Chien-Jung; Tsai, Ching-Pei (2018). Design of Introducing Service Robot into Catering Services. Proceedings of the 2018 International Conference on Service Robotics Technologies, 62-66, doi:10.1145/3208833.3208837
    [18] Osman El-Said, Sara Al Hajri. (2022). Are customers happy with robot service? Investigating satisfaction with robot service restaurants during the COVID-19 pandemic. Heliyon 8(10), doi:10.1016/j.heliyon.2022.e08986
    [19] Hideharu Ouchi, Ryosuke Ueno et al. (2019). Development of Robot Restaurant Simulator. 2019 16th International Conference on Ubiquitous Robots
    [20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347
    [21] Vanessa Hayes et al. (2019). Human origins in a southern African palaeo-wetland and first migrations. Nature
    [22] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in animals. American Psychologist, 53(10), 1125-1127.

    [23] Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its application to the brain model problem. Princeton University.
    [24] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of Go with deep neural networks and tree search. nature 529, 484.
    [25] Beakcheol Jang, Myeonghwi Kim, et al. (2019). Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7
    [26] Schulman, John, et al. (2015). Trust Region Policy Optimization. arXiv:1502.05477
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    109971017
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109971017
    資料類型: thesis
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    101701.pdf3017KbAdobe PDF2208檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋