Reference: | Adam Mussomeli, D. G., and Stephen Laaper. (2016). The rise of the digital supply network. Retrieved from /content/www/globalblueprint/en/insights/focus/industry-4-0/digital- transformation-in-supply-chain.html
Allaire, D., Kordonowy, D., Lecerf, M., Mainini, L., & Willcox, K. (2014). Multifidelity DDDAS methods with application to a self-aware aerospace vehicle. Procedia Computer Science, 29, 1182-1192.
Boschert, S., & Rosen, R. (2016). Digital twin—the simulation aspect. In Mechatronic futures (pp. 59-74): Springer.
Bruynseels, K., Santoni de Sio, F., & Van den Hoven, J. (2018). Digital twins in health care: ethical implications of an emerging engineering paradigm. Frontiers in genetics, 31.
CeArley, D., Burke, B., Searle, S., & Walker, M. J. (2016). Top 10 strategic technology trends for 2018. The Top, 10, 1-246.
Cearley, D. W., Burke, B., & Walker, M. (2019). Top 10 strategic technology trends for.
. The cheap, convenient cloud,. (2015, 15 April 2015). Economist. Retrieved from https://www.economist.com/business/2015/04/18/the-cheap-convenient-cloud Choi, S., & Chan, A. (2004). A virtual prototyping system for rapid product development. Computer-aided design, 36(5), 401-412. Colombo, A. W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R., . . . Lastra, J. L. (2014). Industrial cloud-based cyber-physical systems. The Imc-aesop Approach, 22, 4-5. Coronado, P. D. U., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2018). Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a manufacturing execution system. Journal of manufacturing systems, 48, 25-33. Croatti, A., Gabellini, M., Montagna, S., & Ricci, A. (2020). On the integration of agents and digital twins in healthcare. Journal of Medical Systems, 44(9), 1-8. Damiani, L., Demartini, M., Giribone, P., Maggiani, M., Revetria, R., & Tonelli, F. (2018). Simulation and digital twin based design of a production line: A case
53 study. Paper presented at the Proceedings of the International MultiConference of Engineers and Computer Scientists.
Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air Force vehicles. Paper presented at the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA. Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1(2014), 1-7. Grieves, M. W. (2005). Product lifecycle management: the new paradigm for enterprises. International Journal of Product Development, 2(1-2), 71-84. Hempel, V. (2017). Healthcare Solution Testing for Future| Digital Twins in Healthcare. Digital Health Network, 29. Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart agents in industrial cyber–physical systems. Proceedings of the IEEE, 104(5), 1086-1101. Leiva, C. (2016). Demystifying the digital thread and digital twin concepts. Industry Week, 1(2016), 2016. Liu, Q., Zhang, H., Leng, J., & Chen, X. (2019). Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research, 57(12), 3903-3919. Liu, Y. (2017). Lockheed martin space systems company makes use of digital twins speed F-35 fighter production. In. Liu, Z., Yang, D.-s., Wen, D., Zhang, W.-m., & Mao, W. (2011). Cyber-physical- social systems for command and control. IEEE Intelligent Systems, 26(4), 92- 96. Magargle, R., Johnson, L., Mandloi, P., Davoudabadi, P., Kesarkar, O., Krishnaswamy, S., . . . Pitchaikani, A. (2017). A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system. Paper presented at the Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017. Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia Cirp, 17, 9-13. 54 Murray, L. (2017). Lockheed Martin forecasts tech trends for defense in 2018. Retrieved from https://dallasinnovates.com/lockheed-martin-forecasts-tech- trends-for-defense-in-2018/ Reifsnider, K., & Majumdar, P. (2013). Multiphysics stimulated simulation digital twin methods for fleet management. Paper presented at the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Research, G. V. (2022). Digital Twin Market Size & Share Report, 2022-2030. Retrieved from Shafto, M., Conroy, M., Doyle, R., Gleassgen, E., Kemp, C., LeMoigne, J., & Wang, L. (2010). Draft modelling, simulation, information technology &processing roadmap. Technology Area, 11. Stark, J. (2020). Product lifecycle management (PLM). In Product lifecycle management (Volume 1) (pp. 1-33): Springer. Stark, R., Kind, S., & Neumeyer, S. (2017). Innovations in digital modelling for next generation manufacturing system design. Cirp Annals, 66(1), 169-172. Swedberg, C. (2018). Digital twins bring value to big RFID and IoT data. RFID J. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9), 3563-3576.
Tao, F., Cheng, Y., Cheng, J., Zhang, M., Xu, W., & Qi, Q. (2017). Theories and technologies for cyber-physical fusion in digital twin shop-floor.
Tao, F., Liu, W., Liu, J., Liu, X., Liu, Q., Qu, T., . . . Xu, W. (2018). Digital twin and its potential application exploration. Computer Integrated Manufacturing Systems, 24(1), 1-18.
Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., . . . Nee, A. Y. (2019). Digital twin-driven product design framework. International Journal of Production Research, 57(12), 3935-3953.
Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018a). Digital twin in industry: State-of- the-art. IEEE Transactions on industrial informatics, 15(4), 2405-2415. Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE access, 5, 20418-20427.
Tao, F., Zhang, M., Cheng, J., & Qi, Q. (2017). Digital twin workshop: a new paradigm for future workshop. Computer Integrated Manufacturing Systems, 23(1), 1-9.
55 Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. (2018b). Digital twin driven prognostics and health management for complex equipment. Cirp Annals, 67(1), 169-172. Tao, F., Zhang, M., & Nee, A. Y. C. (2019). Digital twin driven smart manufacturing: Academic Press. Tuegel, E. (2012). The airframe digital twin: some challenges to realization. Paper presented at the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA. Tuegel, E. J., Ingraffea, A. R., Eason, T. G., & Spottswood, S. M. (2011). Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011. Wanasinghe, T. R., Wroblewski, L., Petersen, B. K., Gosine, R. G., James, L. A., De Silva, O., . . . Warrian, P. J. (2020). Digital twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE access, 8, 104175-104197. |