政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143718
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51105117      Online Users : 914
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/143718


    Title: 實數反魔圖與k平移反魔圖之比較
    A comparison between R-antimagic graphs and k-shifted antimagic graphs
    Authors: 蔡侑穎
    Tsai, Yu-Ying
    Contributors: 張宜武
    李渭天

    Chang, Yi-Wu
    Li, Wei-Tian

    蔡侑穎
    Tsai, Yu-Ying
    Keywords: k平移反魔圖
    實數反魔方
    雙星圖 S2,2
    R-antimagic graphs
    K-shifted antimagic graphs
    S2,2
    Date: 2023
    Issue Date: 2023-03-09 18:12:34 (UTC+8)
    Abstract: 具有m 條邊的連通圖的反魔法標號是一個單射函數從邊集合中的m 條邊標上{1, 2, 3, ...,m} 的正整數使得標號的總和在不同的頂點是不同的。一個圖如果它帶有反魔法標號,則稱為反魔圖。Hartsfield and Ringel [7] 推測除了K2 之外的所有連通圖都有反魔法標號。在第1 章中,我們介紹了一些圖論的基本術語以及一些符號與名詞定義。在第2 章中,我們有一些k 平移反魔圖和實數反魔圖的定理。我們對k 平移反魔圖和實數反魔圖之間是否有差異感到興趣。在第3.1章,我們從最多四個邊的圖開始。幾乎所有這些都已經從實數標號的反魔圖[12]和圖的移位反魔方標號[2] 中得到證明。在第3.2 章中,我們嘗試證明如果一個有五個邊的圖是任意k 平移反魔圖,那麼它也是實數反魔圖。最後,我們找到了一個反例,雙星圖S2,2 是任意k 平移反魔圖,但它不是實數反魔圖。
    An antimagic labeling of a connected graph with m edges is a injection from the set of edges E(G) to the set of integers {1, 2, 3, ...,m} such that the sum of labels on edges incident to u differs from that edges incident to
    v. A graph is called antimagic if it has an antimagic labeling. Hartsfield and Ringel conjectured that every connected graph other than K2 has an antimagic labeling. In Chapter 1, we introduced some definitions and notations
    of graph. In Chapter 2, we survey some theorems and propositions of k-shifted antimagic graphs and R-antimagic graphs. We are interested in the difference between of k-shifted antimagic and R-antimagic. In Chapter 3.1, we start the investigation from graphs on at most four edges. From the two references [2] and [12], we know all these graphs are k-shifted antimagic and R-antimagic. In Chapter 3.2, we want to show that if a graph on five edges is k-shifted antimagic, then it is also R-antimagic. Finally, we found
    a counterexample: The double star S2,2 is k-shifted-antimagic, but it is not R-antimagic.
    Reference: [1] N. Alon, G. Kaplan, Y. Roddity, R. Yuster, Dense graphs are antimagic, Journal of Graph Theory, 47 (2004), P.297-309.
    [2] F.-H. Chang, H.-B. Chen, W.-T. Li, and Z. Pan, Shifted-Antimagic Labelings for Graphs, Graphs and Combinatorics, 37 (2021) , P.1065–1082.
    [3] F.-H. Chang, P. Chin, W.-T. Li, and Z. Pan, The Strongly Antimagic labelings of Double Spiders, arXiv:1712.09477 2018.
    [4] F.-H. Chang, Y.-C. Liang, Z. Pan, and X. Zhu, Antimagic labeling of regular graphs, Journal of Graph Theory, 82 (2016), P.339-349.
    [5] D. W. Cranston, Y.-C. Liang, X. Zhu, Regular Graphs of Odd Degree Are Antimagic, Journal of Graph Theory, 80 (2015), P.28-33.
    [6] D.W. Cranston„ Regular bipartite graphs are antimagic, J. Gr. Theory 60, 173–182 (2009)
    [7] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, P.108-109, Revised version 1994.
    [8] T.-Y.Huang, Antimagic Labeling on Spiders, Master Thesis, Department of Mathematics, National Taiwan University (2015)
    [9] D. Hefetz, Anti-magic Graphs via the Combinatorial NullStellenSatz, Journal of Graph Theory, 50 (2005), P.263-272.
    [10] D. Hefetz, T. Mütze, J.Schwartz, On antimagic directed graphs, Journal of Graph Theory, 64 (2010), P.219-232.
    [11] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and antimagic trees, Discrete Math. 309, 2010–2014 (2009)
    39
    [12] Shan-Pang Liu, Graphs with R-Antimagic Labeling, DOI:10.6814/NCCU202200274
    [13] A. Lozano, M. Moray, C. Seara, Antimagic labelings of caterpillars, Appl. Math. Comput. 347, 734–740 (2019)
    [14] Y.-C.Liang, X. Zhu, Anti-magic labeling of cubic graphs, J. Gr. Theory 75, 31–36 (2014)
    [15] Y.-C. Liang, T.-L. Wong, X. Zhu, Anti-magic labeling of trees, Discrete Mathematics, 331 (2014), P.9-14.
    [16] M.-J.Lee, C. Lin, W.-H.Tsai, On antimagic labeling for power of cycles, Ars Comb. 98, 161–165 (2011)
    [17] M. Matamala, J. Zamora, Graphs admitting antimagic labeling for arbitrary sets of positive numbers, Electronic Notes in Discrete Mathematics, 64 (2007), P.159-164.
    [18] J.-L.Shang, Spiders are antimagic, Ars Comb. 118, 367–372 (2015)
    [19] T.-L. Wong, X. Zhu, Antimagic labeling of vertex weighted graphs, Journal of Graph Theory, 70 (2012), P.348-350.
    [20] T.-L. Wong, X. Zhu, Total weight choosability of graphs, Journal of Graph Theory, 66 (2011), P.198-212.
    [21] T.-M.Wang, Toroidal grids are anti-magic, Lect. Notes Comput. Sci. 3595, 671–679 (2005)
    [22] T.-M.Wang, C.-C.Hsiao, On anti-magic labeling for graph products., Discrete Math. 308, 3624–3633 (2008)
    [23] D.B. West. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,2001.
    Description: 碩士
    國立政治大學
    應用數學系
    104751006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104751006
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File Description SizeFormat
    100601.pdf445KbAdobe PDF274View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback