Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/143199
|
Title: | 前額葉皮質次級腦區的破壞對區辨性低反應頻率之操作制約行為的影響效果 Lesion effects of prefrontal cortex subareas on operant behavior trained by differential reinforcement of low-rate response schedule |
Authors: | 吳姝儀 Wu, Shu-Yi |
Contributors: | 楊立行 Lee, Xieng Yang 吳姝儀 Wu, Shu-Yi |
Keywords: | 操作式制約行為 鵝膏蕈酸 眼眶前額葉皮質 內側前額葉皮質 習得歷程 |
Date: | 2023 |
Issue Date: | 2023-02-01 14:15:29 (UTC+8) |
Abstract: | 區辨性低反應頻率增強模式操作式行為作業 (Differential Reinforcement of Low-rate Response task; DRL) 中,其制約反應的建構歷程被認為需有適當的時間計時與行為抑制兩種能力。過去的心理藥理學實驗的結果顯示,一些精神性藥物對於大鼠受試的DRL表現有所影響,然而,該行為本身或其受到藥物影響所涉及的腦部神經機制不明有待釐清。前額葉皮質的主要認知功能包含行為抑制,因此本研究將以大鼠前額葉皮質腦區為目標,利用鵝膏蕈酸 (ibotenic acid) 破壞外側眼眶前額葉 ( lateral orbital frontal cortex; lOFC) 或(和)內側前額葉 (medial frontal cortex; mPFC) 的實驗操弄,探討DRL行為在不同的學習及表現歷程的影響效果。基於制約行為的習得與表現兩階段之神經機制不同的假說,本研究將腦區破壞分別操弄在學習前與學習後兩個不同時間點,以探測lOFC及mPFC對DRL行為的習得及表現所扮演的角色。實驗一操弄破壞大鼠兩側的lOFC或mPFC,檢測這兩個腦區各自對於DRL行為的習得與表現的影響。結果發現,mPFC破壞組在DRL行為消除階段比控制組快,而lOFC破壞組較控制組不衝動。實驗二則進行同時破壞大鼠兩側的lOFC和mPFC,以檢測其對於DRL行為習得的影響。結果顯示同時破壞兩側的lOFC與mPFC會影響DRL的習得歷程,且較控制組衝動。本研究結果發現,mPFC與lOFC兩腦區有共同參與調控計時能力與衝動抑制的功能。綜合以上結果,mPFC會參與消除的學習,而lOFC在區間計時的功能上則扮演重要的角色。 Operant response maintained on a differential reinforcement of low-rate responding (DRL) schedule of reinforcement requires optimal timing control and behavioral inhibition ability. DRL behavior has been shown to be affected by psychoactive drugs from psychopharmacology research. However, the underlying neural mechanisms of this operant behavior remained unknown. In this project, two subareas of prefrontal cortex including the medial prefrontal cortex (mPFC), and the orbitofrontal cortex (OFC) will be examined by pharmacological lesion approach. Based on the hypothesis that the neural mechanisms of the two stages of the acquisition and performance of the conditioning behavior are different, the aim of the present study was to clarify the role of the mPFC or lOFC at two different time points before learning and after learning by investigating the effect of ibotenic acid induced lesions of the prefrontal subareas on DRL task. Experiment 1 manipulated bilateral mPFC or lOFC in rats to investigate the effects of these brain subregions on acquisition or performance on DRL tasks, respectively. Animals with bilateral mPFC lesions learned faster than control group in the extinction phase, while the lOFC lesioned group was less impulsive than control group. In experiment 2, the two regions of mPFC and lOFC lesions bilaterally in the rats to estimate its effect on DRL acquisition. The results show that lesions bilateral mPFC and lOFC simultaneously would affect acquisition process of DRL, and induced impulsive behavior in lesion group. These data suggest that both mPFC and lOFC are involved in the regulation of timing processes and impulsive inhibition. Taken together, the mPFC lesion affected response in the behavioral extinction, implying mPFC may involve in this process; lOFC lesion yielded behavioral changes to less impulsive in the DRL task with interval upward shifting in the acquisition and preference phases, showing lOFC may participate in the timing process. |
Reference: | Abela, A. R., Dougherty, S. D., Fagen, E. D., Hill, C. J., & Chudasama, Y. (2013). Inhibitory control deficits in rats with ventral hippocampal lesions. Cerebral Cortex, 23(6), 1396-1409. Barratt, E. S. (1983). The biological basis of impulsiveness: The significance of timing and rhythm disorders. Personality and Individual Differences, 4(4), 387-391. Belin-Rauscent, A., Daniel, M. L., Puaud, M., Jupp, B., Sawiak, S., Howett, D., ... & Belin, D. (2016). From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Molecular Psychiatry, 21(4), 491-499. Berlin, H. A., Rolls, E. T., & Kischka, U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain, 127(5), 1108-1126. Broersen, L. M., & Uylings, H. B. M. (1999). Visual attention task performance in Wistar and Lister hooded rats: response inhibition deficits after medial prefrontal cortex lesions. Neuroscience, 94(1), 47-57. Brown, S. W. (2006). Timing and executive function: Bidirectional interference between concurrent temporal production and randomization tasks. Memory and Cognition, 34(7), 1464-1471. Brown, V. J., & Bowman, E. M. (2002). Rodent models of prefrontal cortical function. Trends in Neurosciences, 25(7), 340-343. Buhusi, C. V., Reyes, M. B., Gathers, C. A., Oprisan, S. A., & Buhusi, M. (2018). Inactivation of the medial-prefrontal cortex impairs interval timing precision, but not timing accuracy or scalar timing in a peak-interval procedure in rats. Frontiers in Integrative Neuroscience, 12, 20. Caballero, J. P., Scarpa, G. B., Remage-Healey, L., & Moorman, D. E. (2019). Differential effects of dorsal and ventral medial prefrontal cortex inactivation during natural reward seeking, extinction, and cue-induced reinstatement. Eneuro, 6(5). Cappella, B., Gentile, J. R., & Juliano, D. B. (1977). Time estimation by hyperactive and normal children. Perceptual and Motor Skills, 44(3), 787-790. Cheng, R. K., & Liao, R. M. (2017). Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in rats. Behavioural Brain Research, 331, 177-187. Cho, Y. H., & Jeantet, Y. (2010). Differential involvement of prefrontal cortex, striatum, and hippocampus in DRL performance in mice. Neurobiology of Learning and Memory, 93(1), 85-91. Christakou, A., Robbins, T. W., & Everitt, B. J. (2001). Functional disconnection of a prefrontal cortical–dorsal striatal system disrupts choice reaction time performance: Implications for attentional function. Behavioral Neuroscience, 115(4), 812–825. Christakou, A., Robbins, T. W., & Everitt, B. J. (2004). Prefrontal cortical–ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. Journal of Neuroscience, 24(4), 773-780. Chudasama, Y., & Muir, J. L. (2001). Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behavioral Neuroscience, 115(2), 417-428. Chudasama, Y., Passetti, F., Rhodes, S. E. V., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1-2), 105-119. Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews Neuroscience, 18(3), 158-171. Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience & Biobehavioral Reviews, 28(7), 771-784. Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680-694. Dietrich, A., & Allen, J. D. (1998). Functional dissociation of the prefrontal cortex and the hippocampus in timing behavior. Behavioral Neuroscience, 112(5), 1043. Eagle, D. M., & Baunez, C. (2010). Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 34(1), 50-72. Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., & Robbins, T. W. (2008). Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cerebral Cortex, 18(1), 178-188. Elcoro, M., Aparicio, C. F., Kelly, S. P., & Thompson, T. (2016). Behavioral inhibition in rats after 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychology and Neuroscience, 9(1), 125. Evenden, J. (1999a). Impulsivity: a discussion of clinical and experimental findings. Journal of Psychopharmacology, 13(2), 180-192. Evenden, J. L. (1999b). Varieties of impulsivity. Psychopharmacology, 146(4), 348-361. Feja, M., & Koch, M. (2014). Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect delay-discounting in rats. Behavioural Brain Research, 264, 230-239. Feja, M., & Koch, M. (2015). Frontostriatal systems comprising connections between ventral medial prefrontal cortex and nucleus accumbens subregions differentially regulate motor impulse control in rats. Psychopharmacology, 232(7), 1291-1302. Finger, S., Altemus, K. L., Green, L., Wolf, C., Miller, J., & Almli, C. R. (1987). Effects of medial frontal cortex lesions on DRL performance in rats. Physiology and Behavior, 41(4), 387-389. Fletcher, P. J., Chambers, J. W., Rizos, Z., & Chintoh, A. F. (2009). Effects of 5-HT depletion in the frontal cortex or nucleus accumbens on response inhibition measured in the 5-choice serial reaction time test and on a DRL schedule. Behavioural Brain Research, 201(1), 88-98. Fuster, J. (2015). The prefrontal cortex (5th ed.). Elsevier Science. Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research, 133(1), 66-70. Groenewegen, H. J., Galis-de Graaf, Y., & Smeets, W. J. (1999). Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. Journal of Chemical Neuroanatomy, 16(3), 167-185. Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27(6), 555-579. Kanahara, N., Sekine, Y., Haraguchi, T., Uchida, Y., Hashimoto, K., Shimizu, E., & Iyo, M. (2013). Orbitofrontal cortex abnormality and deficit schizophrenia. Schizophrenia Research, 143(2-3), 246-252. Kim, J., Jung, A. H., Byun, J., Jo, S., & Jung, M. W. (2009). Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Frontiers in Behavioral Neuroscience, 3, 38. Kolb, B., Nonneman, A. J., & Singh, R. K. (1974). Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. Journal of Comparative and Physiological Psychology, 87(4), 772. Kramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A selective critique. Psychological Bulletin, 74(4), 225. Kubos, K. L., Brady, J. V., Moran, T. H., Smith, C. H., & Robinson, R. G. (1985). Asymmetrical effect of unilateral cortical lesions and amphetamine on DRL-20: A time-loss analysis. Pharmacology Biochemistry and Behavior, 22(6), 1001-1006. Lacroix, L., Spinelli, S., White, W., & Feldon, J. (2000). The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience, 97(3), 459-468. Lejeune, H., Richelle, M., & Wearden, J. H. (2006). About Skinner and time: Behavior‐analytic contributions To research on animal timing. Journal of the Experimental Analysis of Behavior, 85(1), 125-142. Liao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the DRL behavior in the rat: Comparison with selective dopamine receptor antagonists. Chinese Journal Physiology, 48(1), 41-50. Liao, R. M., & Lin, H. L. (2008). Differential effects of lesions in the subareas of medial prefrontal cortex on the development of behavioral sensitization to amphetamine: The role of environmental context. Chinese Journal Physiology, 51(6), 394-401. Liao, R. M., & Pattij, T. (2022). Neural basis of operant behaviors maintained on the differential-reinforcement-of-low-rate (DRL) schedule in rodents. Brain Research Bulletin.185,1-17 Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 45-54. Mar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. Journal of Neuroscience, 31(17), 6398-6404. Moeller, F. G., Hasan, K. M., Steinberg, J. L., Kramer, L. A., Dougherty, D. M., Santos, R. M., Valdes, I., Swann, A. C., Barratt, E. S., & Narayana, P. A. (2005). Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacology, 30(3), 610–617. Monterosso, J., & Ainslie, G. (1999). Beyond discounting: possible experimental models of impulse control. Psychopharmacology, 146(4), 339-347. Moorman, D. E., & Aston-Jones, G. (2015). Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction. Proceedings of the National Academy of Sciences, 112(30), 9472-9477. Morris, L. S., Kundu, P., Baek, K., Irvine, M. A., Mechelmans, D. J., Wood, J., Harrison, N. A., Robbins, T. W., Bullmore, E. T., & Voon, V. (2016). Jumping the Gun: Mapping Neural Correlates of Waiting Impulsivity and Relevance Across Alcohol Misuse. Biological psychiatry, 79(6), 499–507. Nalwa, V., & Rao, P. S. (1985). DRL responding under uncertain reinforcement in rats after medial frontal cortical lesions. Behavioural Brain Research, 17(1), 73-76. Neill, D. B. (1976). Frontal-striatal control of behavioral inhibition in the rat. Brain Research, 105(1), 89-103. Nonneman, A. J., Voigt, J., & Kolb, B. E. (1974). Comparisons of behavioral effects of hippocampal and prefrontal cortex lesions in the rat. Journal of Comparative and Physiological Psychology, 87(2), 249. Numan, R., Seifert, A. R., & Lubar, J. F. (1975). Effects of medio-cortical frontal lesions on DRL performance in the rat. Physiological Psychology, 3(4), 390-394. Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10(3), 206-219. Passetti, F., Chudasama, Y., & Robbins, T. W. (2002). The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cerebral Cortex, 12(12), 1254-1268. Paxinos, G., & Watson, C (2007). The Rat Brain in Stereotaxic Coordinates (sixth ed.). London: Academic Press. Pezze, M. A., Dalley, J. W., & Robbins, T. W. (2009). Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D2/3 receptor antagonist sulpiride. Psychopharmacology, 202(1), 307-313. Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York Academy of Sciences, 1121(1), 355-375. Risterucci, C., Terramorsi, D., Nieoullon, A., & Amalric, M. (2003). Excitotoxic lesions of the prelimbic‐infralimbic areas of the rodent prefrontal cortex disrupt motor preparatory processes. European Journal of Neuroscience, 17(7), 1498-1508. Robbins, T. (2002). The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology, 163(3), 362-380. Robinson, E. S., Eagle, D. M., Economidou, D., Theobald, D. E., Mar, A. C., Murphy, E. R., Robbins, T. W., & Dalley, J. W. (2009). Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’versus ‘stopping’. Behavioural Brain Besearch, 196(2), 310-316. Roesch, M. R., Taylor, A. R., & Schoenbaum, G. (2006). Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron, 51(4), 509-520. Rosenkilde, C. E., & Divac, I. (1975). DRL performance following anteromedial cortical ablations in rats. Brain Research, 95(1), 142-146. Sokolowski, J. D., & Salamone, J. D. (1994). Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Research, 642(1-2), 20-28. Sosa, J. L. R., Buonomano, D., & Izquierdo, A. (2021). The orbitofrontal cortex in temporal cognition. Behavioral Neuroscience, 135(2), 154. Stevens, J. R. (2017). Impulsivity: How Time and Risk Influence Decision Making. Cham, Switzerland: Springer. Turner, K. M., & Parkes, S. L. (2020). Prefrontal regulation of behavioural control: Evidence from learning theory and translational approaches in rodents. Neuroscience & Biobehavioral Reviews, 118, 27-41. van der Knaap, L. J., & van der Ham, I. J. (2011). How does the corpus callosum mediate interhemispheric transfer? A review. Behavioural Brain Research, 223(1), 211-221. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30(1), 31-56. Wang, J., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible timing by temporal scaling of cortical responses. Nature Neuroscience, 21(1), 102-110. Winstanley, C. A., Olausson, P., Taylor, J. R., & Jentsch, J. D. (2010). Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcoholism: Clinical and Experimental Research, 34(8), 1306-1318. Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. Journal of Neuroscience, 24(20), 4718-4722. Winstanley, C. A., Zeeb, F. D., Bedard, A., Fu, K., Lai, B., Steele, C., & Wong, A. C. (2010). Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task. Behavioural Brain Research, 210(2), 263-272. Yang, D. Y., Chi, M. H., Chu, C. L., Lin, C. Y., Hsu, S. E., Chen, K. C., ... & Yang, Y. K. (2019). Orbitofrontal dysfunction during the reward process in adults with ADHD: An fMRI study. Clinical Neurophysiology, 130(5), 627-633. |
Description: | 碩士 國立政治大學 心理學系 109752010 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109752010 |
Data Type: | thesis |
Appears in Collections: | [心理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
201001.pdf | | 3626Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|