政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143136
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113478/144464 (79%)
造访人次 : 51489263      在线人数 : 336
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 財務管理學系 > 期刊論文 >  Item 140.119/143136


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/143136


    题名: 房市參與者之關注會影響房價嗎?
    Will Attention of Market Participants Influence Housing Prices?
    作者: 陳明吉;朱芳妮
    Chen, Ming-chi;Chu, Fang-ni
    楊茜文;呂少毫
    Yang, Chien-wen;Lu, Shao-hao
    贡献者: 財管系;地政系
    关键词: 認知假說;有限關注;Google搜尋量指數;房價
    Investor recognition;Limited attention;Google Trends;Google SVI;Real estate price
    日期: 2022-10
    上传时间: 2023-01-31 16:33:26 (UTC+8)
    摘要: 人對於大量訊息資料的關注是有限並且是選擇性的,使得關注力在何處成為決策的重要因素。本文探討房市參與者的關注是否會影響房價,採用Google Trends搜尋引擎的關鍵字搜尋量為代理變數,建構五個關注指標以測試2006年至2019年的台北市房市參與者之關注與房價關係。實證結果確認台灣的房市參與者關注會影響房價,關注增加會導致房價上升。進一步將樣本以時間區分成房價上升與平穩兩時期,發現市場參與者的關注有不對稱情形,在房價上升期較有影響力。本文最後比較關注與情緒兩指標對房價的預測能力,發現兩者預測能力接近,但關注模型的預測能力會略優於情緒模型。
    Investor attention to a large amount of information is limited and selective, making where attention is an important factor in decision-making. We explore whether the attention of housing market participants will affect housing prices. The search volume of keywords using the Google Trends search engine are the proxy variables to construct five attention indicators to test the relationship between the attention of participants and housing price in the Taipei housing market from 2006 to 2019. The empirical results confirm that the attention of market participants will affect house prices, and the increase in attention will cause house prices to rise. Divided price sample to rise and stable stage, we found that the attention of participants is asymmetry, which is more influential in the period of house price rise. We also compare the indicators of attention and sentiment on the predictive ability of house prices. The results show that the predictive ability is close. The predictability in attention model is slightly better than sentiment model.
    關聯: 管理與系統, Vol.29, No.4, pp.495-523
    数据类型: article
    显示于类别:[財務管理學系] 期刊論文
    [地政學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2281检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈