English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51579395      Online Users : 937
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/142868
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142868


    Title: 地理加權迴歸在視覺化分析之探討
    Using Geographically Weighted Regression for Spatial Data Visualization
    Authors: 余清祥
    Yue, Jack C.
    梁穎誼;郭柔芸
    Leong, Yin-Yee;Kuo, Rou-Yun
    Contributors: 統計系
    Keywords: 地理加權迴歸;空間統計;視覺化;探索性資料分析;電腦模擬
    Geographically Weighted Regression;Spatial Statistics;Data Visualization;Exploratory Data Analysis;Simulation
    Date: 2022-12
    Issue Date: 2022-12-27 11:05:34 (UTC+8)
    Abstract: 近年大數據蓬勃發展,統計分析的應用更為廣泛,各領域資料以不同型態出現,資料視覺化(Data Visualization)成為探索性資料分析(Exploratory Data Analysis)的核心。視覺化對於空間資料尤為重要,藉由圖表等工具可有效地呈現資料主要特性,包括空間異質性(Spatial Inhomogeneity)、空間自相關(Spatial Autocorrelation),做為後續研究進行的依據。地理加權迴歸(GWR,Geographically Weighted Regression)可視為空間資料的迴歸分析,描述目標變數與解釋變數間的局部關係,用於展示變數關係隨地理位置的變化。本文探討地理加權迴歸的適用時機,透過電腦模擬說明GWR的限制及可能問題,測試修正方法是否有效,同時提出這個方法的使用建議。
    Data appear in many different forms in the age of big data, and applications of data analysis have become more extensive recently. Data Visualization is the core of Exploratory Data Analysis, which is particularly important for the analysis of spatial data. Visualization tools, such as graphs and tables, can effectively present the main characteristics of the data, including spatial homogeneity and spatial autocorrelation. Geographically Weighted Regression (GWR) describes the local relationship between target variables and explanatory variables, and is used to show the change of variable relationship with geographic locations. This paper discusses the applicable timing of GWR, illustrates the limitations and possible problems of GWR through computer simulation, and tests whether the modification of GWR is effective.
    Relation: 中國統計學報, Vol.60, No.4, pp.208-232
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2189View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback