政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/142453
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113648/144635 (79%)
造訪人次 : 51585596      線上人數 : 857
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/142453
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/142453


    題名: Nonparametric discriminant analysis with network structures in predictor
    作者: 陳立榜
    Chen, Li-Pang
    貢獻者: 統計系
    關鍵詞: Classification;F-score;graphical models;multivariate kernel estimation;multiclassification;network structure;prediction;supervised learning;surrogate features
    日期: 2022-06
    上傳時間: 2022-10-20 16:06:34 (UTC+8)
    摘要: Multiclassification, known as classification for multi-label responses, has been an important problem in supervised learning and has attracted our attention. Discriminant analysis (DA) is a popular method to deal with multiclassification. With the increasing availability of complex data, it becomes more challenging to analyse them. One of the important features in complex data is the network structure, which is ubiquitous in high-dimensional data because of strong or weak correlations among variables. In addition, in the framework of DA, an assumption of normal distributions is imposed on the predictors, but it is usually invalid in applications. To relax the normality assumption, we propose a nonparametric discriminant function to address multiclassification. In addition, to incorporate the network structure and improve the accuracy of classification, we develop three different network-based surrogate predictors to replace conventional predictors. The key features of the proposed method include the incorporation of network structures in predictors and allowance of predictors to follow exponential family distributions. Finally, numerical studies, including simulation and real data analysis, are conducted to assess the performance of the proposed method.
    關聯: Journal of Statistical Computation and Simulation, pp.1-26
    資料類型: article
    DOI 連結: https://doi.org/10.1080/00949655.2022.2084618
    DOI: 10.1080/00949655.2022.2084618
    顯示於類別:[統計學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2192檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋