政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/142230
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113311/144292 (79%)
造访人次 : 50942449      在线人数 : 994
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/142230


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/142230


    题名: Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting
    作者: 蔡銘峰
    Tsai, Ming-Feng
    Lin, Sheng-Chieh;Yang, Jheng-Hong;Nogueira, Rodrigo;Wang, Chuan-Ju;Lin, Jimmy
    贡献者: 資科系
    关键词: Query reformulation;Task models;Environment-specific retrieval
    日期: 2021-10
    上传时间: 2022-10-07
    摘要: Conversational search plays a vital role in conversational information seeking. As queries in information seeking dialogues are ambiguous for traditional ad hoc information retrieval (IR) systems due to the coreference and omission resolution problems inherent in natural language dialogue, resolving these ambiguities is crucial. In this article, we tackle conversational passage retrieval, an important component of conversational search, by addressing query ambiguities with query reformulation integrated into a multi-stage ad hoc IR system. Specifically, we propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting. For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals. For the latter, we reformulate conversational queries into natural, stand-alone, human-understandable queries with a pretrained sequence-to-sequence model. Detailed analyses of the two CQR methods are provided quantitatively and qualitatively, explaining their advantages, disadvantages, and distinct behaviors. Moreover, to leverage the strengths of both CQR methods, we propose combining their output with reciprocal rank fusion, yielding state-of-the-art retrieval effectiveness, 30% improvement in terms of NDCG@3 compared to the best submission of Text REtrieval Conference (TREC) Conversational Assistant Track (CAsT) 2019.
    關聯: ACM Transactions on Information Systems, 39(4), Article No. 48, pp. 1-29
    数据类型: article
    DOI 連結: https://doi.org/10.1145/3446426
    DOI: 10.1145/3446426
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2226检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈