English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50798359      Online Users : 800
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142189


    Title: 介觀自旋軌道耦合系統中的量子傳輸之數值研究
    Numerical study of quantum transport in mesoscopic spin-orbit coupled systems
    Authors: 劉于綺
    Liu, Yu-Chi
    Contributors: 許琇娟
    Hsu, Hsiu-Chuan
    劉于綺
    Liu, Yu-Chi
    Keywords: 量子傳輸
    Rashba自旋軌道耦合
    自旋霍爾效應
    自旋霍爾傳導率
    量子傳導率
    雜質效應
    Quantum transport
    Quantum conductance
    Rashba spin-orbit coupling
    Spin–Hall effect
    Spin–Hall conductivity
    Disorder effect
    Date: 2022
    Issue Date: 2022-10-05 09:31:07 (UTC+8)
    Abstract: 在本篇論文中我們以數值計算討論幾種Rashba自旋軌道耦合介觀系
    統,由文獻指出在這些系統設置下所計算的量子傳導率和自旋霍爾傳導
    率會受到Rashba自旋軌道耦合強度及雜質之影響,在本論文中會針對幾個
    系統之結果做討論及介紹。論文中所有的結果皆由kwant一個由多國研究
    員共同研發來計算量子傳輸效應進行數值計算。Kwant以Landauer–B ̈uttiker 形式及格林函數(Green’s function)去計算一緊束緮模型(Tight–binding model)。

    在研究系統幾何的例子中,我們設置了圓形環、方形環以及實心方形
    系統,而傳導率在圓形環的結果出現震盪現象,且系統傳導率會受到自旋
    軌道耦合強度的影響。當我們在圓形環、方形環系統中施加一平面內塞曼
    場(Zeeman field)時,傳導率及自旋霍爾傳導率結果皆呈現一些干涉紋特徵。

    在研究雜質(隨機亂數)效應的例子,我們發現只要Rashba自旋軌道
    耦合強度不為零便能誘發自旋霍爾傳導率的產生。介觀下的自旋霍爾傳導
    率在雜質強度為零時(乾淨系統中)與連續模型所導出的固定常數不同,
    且傳導率會受雜質強度影響。在某些雜質添加方式下雜質強度不為零時
    (隨機雜質系統中),雜質會削弱自旋霍爾傳導率且隨強度增加而減弱。
    根據文獻與我們的結果顯示自旋霍爾傳導率震盪週期顯示此震盪現象係由
    有限系統下之自旋進動結果。
    We numerically study quantum transport in mesoscopic two-dimensional electron systems (2DESs) with Rashba spin–orbit coupling (SOC), particularly the effect of disorder and Rashba SOC on spin-Hall conductivities (SHCs) and charge
    conductance in different limits. The numerical simulations are performed with Kwant, an open–source package for numerically calculating quantum transport for discretized tight-binding models based on the Landauer–B ̈uttiker approach and Green’s function formalism.

    In this thesis, the geometric structures are rings, square loops and square shapes. For a Rashba ring, the quantum conductance oscillates and depends on
    the strength of Rashba SOC. When an in–plane Zeeman field is applied to a ring or a square–loop system, the quantum conductance and SHC show interference pattern characteristics.

    For disorder effects, in the disordered limit, the on–site and Rashba type disorders weaken SHC. Notably, we found that in a system without SOC, SHC can be induced by random Rashba SOC. We show that in the clean limit (W = 0), in contrast to the continuum model, SHC is not universal for a mesoscopic structure. This finding agrees with previous numerical studies. Moreover, the period of SHC indicates that oscillation patterns result from the spin precessional effect in finite–size systems.
    Reference: [1] Jairo Sinova, Sergio O Valenzuela, J ̈org Wunderlich, CH Back, and T Jung-wirth. Spin hall effects. Reviews of modern physics, 87(4):1213, 2015.
    [2] Igor ˇZuti ́c, Jaroslav Fabian, and S Das Sarma. Spintronics: Fundamentals and applications. Reviews of modern physics, 76(2):323, 2004.
    [3] Atsufumi Hirohata, Keisuke Yamada, Yoshinobu Nakatani, Ioan-Lucian Pre-jbeanu, Bernard Di ́eny, Philipp Pirro, and Burkard Hillebrands. Review on spintronics: Principles and device applications. Journal of Magnetism and
    Magnetic Materials, 509:166711, 2020.
    [4] Supriyo Datta and Biswajit Das. Electronic analog of the electro-optic modulator. Applied Physics Letters, 56(7):665–667, 1990.
    [5] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge university press, 1997.
    [6] Edwin H Hall et al. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3):287–292, 1879.
    [7] Yuichiro K Kato, Roberto C Myers, Arthur C Gossard, and David D Awschalom. Observation of the spin hall effect in semiconductors. science, 306(5703):1910–1913, 2004.
    [8] K Nomura, J Wunderlich, Jairo Sinova, B Kaestner, AH MacDonald, and T Jungwirth. Edge-spin accumulation in semiconductor two-dimensional hole gases. Physical Review B, 72(24):245330, 2005.
    [9] Tsung-Wei Chen. Conserved spin current with a perpendicular magnetic field. Physics Letters A, 384(24):126454, 2020.
    [10] Emmanuel I Rashba. Spin–orbit coupling and spin transport. Physica E: Low-dimensional Systems and Nanostructures, 34(1-2):31–35, 2006.
    [11] Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Waintal. Kwant: a software package for quantum transport. New Journal of
    Physics, 16(6):063065, 2014.
    [12] Rohit Subbarayan Chandramouli, Rohit Kumar Srivastav, and Santosh Kumar. Electronic transport in chaotic mesoscopic cavities: A kwant and random matrix theory based exploration. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(12):123120, 2020.
    [13] Sudin Ganguly and Saurabh Basu. Spin dependent disorder in a junction device with spin orbit couplings. In Journal of Physics: Conference Series, volume 759, page 012028. IOP Publishing, 2016.
    [14] Sverre A Gulbrandsen, Camilla Espedal, and Arne Brataas. Spin hall effect
    in antiferromagnets. Physical Review B, 101(18):184411, 2020.
    [15] Minmin Wang, H Saarikoski, Andres Alejandro Reynoso, JP Baltan ́as, D Frustaglia, and J Nitta. Geometry-assisted topological transitions in spin interferometry. Physical review letters, 123(26):266804, 2019.
    [16] Henri Saarikoski, J Enrique V ́azquez-Lozano, Jos ́e Pablo Baltan ́as, Fumiya Nagasawa, Junsaku Nitta, and Diego Frustaglia. Topological transitions in spin interferometers. Physical Review B, 91(24):241406, 2015.
    [17] Francisco Mireles and George Kirczenow. Ballistic spin-polarized transport
    and rashba spin precession in semiconductor nanowires. Physical Review B, 64(2):024426, 2001.
    [18] M Buttiker. Symmetry of electrical conduction. IBM Journal of Research
    and Development, 32(3):317–334, 1988.
    [19] Rolf Landauer. Conductance from transmission: common sense points.
    Physica Scripta, 1992(T42):110, 1992.
    [20] H-L Engquist and PW Anderson. Definition and measurement of the electri-
    cal and thermal resistances. Physical Review B, 24(2):1151, 1981.
    [21] Yoseph Imry. Physics of mesoscopic systems. In Directions in Condensed
    Matter Physics: Memorial Volume in Honor of Shang-keng Ma, pages 101–
    163. World Scientific, 1986.
    [22] Robert Landauer. Spatial variation of currents and fields due to localized
    scatterers in metallic conduction. IBM Journal of Research and Development,
    32(3):306–316, 1988.
    [23] Lingjie Du, Ivan Knez, Gerard Sullivan, and Rui-Rui Du. Robust helical edge
    transport in gated inas/gasb bilayers. Physical review letters, 114(9):096802,
    2015.
    [24] AG Mal’shukov, VV Shlyapin, and Koung-An Chao. Quantum oscillations
    of spin current through a iii-v semiconductor loop. Physical Review B, 6(8):081311, 2002.
    [25] Francisco Mireles and George Kirczenow. Ballistic spin-polarized transport
    and rashba spin precession in semiconductor nanowires. Physical Review B, 64(2):024426, 2001.
    [26] Gary A Prinz. Magnetoelectronics. science, 282(5394):1660–1663, 1998.
    [27] SA Wolf, DD Awschalom, RA Buhrman, JM Daughton, von S von Moln ́ar, ML Roukes, A Yu Chtchelkanova, and DM Treger. Spintronics: a spin-based electronics vision for the future. science, 294(5546):1488–1495, 2001.
    [28] Tsuneya Ando, Yasuhiko Arakawa, Kazuhito Furuya, Susumu Komiyama,
    and Hisao Nakashima. Mesoscopic physics and electronics. Springer Science
    & Business Media, 2012.
    [29] Michael Victor Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392(1802):45–57, 1984.
    [30] Cheng-Hung Chang, Anatoly G Mal’shukov, and Koung-An Chao. Spin transmission through quantum dots with strong spin–orbit interaction. Physics Letters A, 326(5-6):436–441, 2004.
    [31] Supriyo Datta and Biswajit Das. Electronic analog of the electro-optic modulator. Applied Physics Letters, 56(7):665–667, 1990.
    [32] Diego Frustaglia and Klaus Richter. Spin interference effects in ring conductors subject to rashba coupling. Physical Review B, 69(23):235310, 2004.
    [33] AG Mal’shukov, VV Shlyapin, and KA Chao. Effect of the spin-orbit geometric phase on the spectrum of aharonov-bohm oscillations in a semiconductor mesoscopic ring. Physical Review B, 60(4):R2161, 1999.
    [34] FE Meijer, AF Morpurgo, and TM Klapwijk. One-dimensional ring in the presence of rashba spin-orbit interaction: Derivation of the correct hamiltonian. Physical Review B, 66(3):033107, 2002.
    [35] Junsaku Nitta, Frank E Meijer, and Hideaki Takayanagi. Spin-interference device. Applied Physics Letters, 75(5):695–697, 1999.
    [36] Han-Zhao Tang, Li-Xue Zhai, and Jian-Jun Liu. Spin conductance in three-terminal rings subject to rashba and dresselhaus spin-orbit coupling. Current
    Applied Physics, 18(1):122–126, 2018.
    [37] Shuichi Murakami, Naoto Nagaosa, and Shou-Cheng Zhang. Dissipationless
    quantum spin current at room temperature. Science, 301(5638):1348–1351, 2003.
    [38] Jairo Sinova, Dimitrie Culcer, Qian Niu, NA Sinitsyn, T Jungwirth, and Allan H MacDonald. Universal intrinsic spin hall effect. Physical review letters, 92(12):126603, 2004.
    [39] AA Burkov, Alvaro S N ́u ̃nez, and AH MacDonald. Theory of spin-charge-coupled transport in a two-dimensional electron gas with rashba spin-orbit interactions. Physical Review B, 70(15):155308, 2004.
    [40] John Schliemann and Daniel Loss. Dissipation effects in spin-hall transport
    of electrons and holes. Physical Review B, 69(16):165315, 2004.
    [41] L Sheng, DN Sheng, and CS Ting. Spin-hall effect in two-dimensional electron systems with rashba spin-orbit coupling and disorder. Physical review letters, 94(1):016602, 2005.
    [42] TP Pareek and P Bruno. Spin coherence in a two-dimensional electron gas with rashba spin-orbit interaction. Physical Review B, 65(24):241305, 2002.
    [43] DN Sheng and ZY Weng. Disappearance of integer quantum hall effect. Physical review letters, 78(2):318, 1997.
    Description: 碩士
    國立政治大學
    應用物理研究所
    109755001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109755001
    Data Type: thesis
    DOI: 10.6814/NCCU202201608
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    500101.pdf4097KbAdobe PDF2117View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback