Reference: | Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature verifi- cation using a” siamese” time delay neural network. Advances in neural information processing systems, 6. Chakraborty, R. and Pramanik, A. (2022). Dcnn-based prediction model for detection of age-related macular degeneration from color fundus images. Medical & Biological Engineering & Computing, 60(5):1431–1448. Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework for contrastive learning of visual representations. In International conference on machine learning, pages 1597–1607. PMLR. Chen, T.-C., Lim, W. S., Wang, V. Y., Ko, M.-L., Chiu, S.-I., Huang, Y.-S., Lai, F., Yang, C.-M., Hu, F.-R., Jang, J.-S. R., et al. (2021). Artificial intelligence–assisted early detec- tion of retinitis pigmentosa—the most common inherited retinal degeneration. Journal of Digital Imaging, 34(4):948–958. Chen, X., Fan, H., Girshick, R., and He, K. (2020b). Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297. Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In Pro- ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258. Dataset, B. R. O.-A. (2019). ichallenge-amd. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009a). Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009b). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09. Farnell, D. J., Hatfield, F. N., Knox, P., Reakes, M., Spencer, S., Parry, D., and Harding, S. P. (2008). Enhancement of blood vessels in digital fundus photographs via the appli- cation of multiscale line operators. Journal of the Franklin institute, 345(7):748–765. Fukushima, K. and Miyake, S. (1982). Neocognitron: A new algorithm for pattern recog- nition tolerant of deformations and shifts in position. Pattern recognition, 15(6):455– 469. Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural Information Processing Systems, 33:21271–21284. Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni- tion. In Proceedings of the IEEE conference on computer vision and pattern recogni- tion, pages 770–778. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708. Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and func- tional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106. Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Technical report, Citeseer. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. (1989). Handwritten digit recognition with a back-propagation network. Advances in neural information processing systems, 2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature learning. Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345–1359. Raghu, M., Zhang, C., Kleinberg, J., and Bengio, S. (2019). Transfusion: Understand- ing transfer learning for medical imaging. Advances in neural information processing systems, 32. Robinson, J., Chuang, C.-Y., Sra, S., and Jegelka, S. (2020). Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088):533–536. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626. Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):60. Smith, R. (2007). An overview of the tesseract ocr engine. In Ninth international confer- ence on document analysis and recognition (ICDAR 2007), volume 2, pages 629–633. IEEE. Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4, inception- resnet and the impact of residual connections on learning. In AAAI, volume 4, page 12. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., and Van- houcke (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826. Torrey, L. and Shavlik, J. (2010). Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, pages 242–264. IGI global. Yu, Y., Chen, X., Zhu, X., Zhang, P., Hou, Y., Zhang, R., and Wu, C. (2020). Performance of deep transfer learning for detecting abnormal fundus images. Journal of Current Ophthalmology, 32(4):368. Zhai, X., Oliver, A., Kolesnikov, A., and Beyer, L. (2019). S4l: Self-supervised semi- supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1476–1485. |