English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51039336      Online Users : 911
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/142067
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142067


    Title: 探討文本摘要與使用者互動於保險科技新聞之應用
    Exploring text summarization with interaction on InsurTech news
    Authors: 郭宗翰
    Kuo, Tsung-Han
    Contributors: 林怡伶
    Lin, Yi-Ling
    郭宗翰
    Kuo, Tsung-Han
    Keywords: 使用者互動
    保險科技
    文本摘要
    競爭智慧
    User interaction
    InsurTech
    Text summarization
    Competitor intelligence
    Date: 2022
    Issue Date: 2022-10-05 09:01:21 (UTC+8)
    Abstract: 近年來,保險業逐漸走向全面數位化,大數據、人工智慧、區塊鏈等先進技術。許多保險公司改變了原有的商業模式、流程和產品,以應對環境的動態變化。由於競爭關係發生了變化,新聞資訊對於保險公司的在變得更加重要。本研究致力於開發一個可以幫助使用者整理資訊的系統,並包含文本摘要、交互過濾機制和標註關鍵字的註釋。我們透過實驗室實驗評估我們開發的系統,並測試我們的系統和使用者既有的習慣在不同面向的結果是否有所不同。這項研究的結果表明,我們開發的系統具有更高的生產力,我們的受試者可以通過我們設計的三個功能產生更多字數的摘要。此外,標註工具和關鍵字上色也有助於受試者閱讀文本內容。通過主觀問卷以及訪談,我們的系統被證明對使用者有用。
    The insurance industry in recent years has gradually been digitalized with the advance technology, such as the big data, AI, and blockchain. Many insurance companies had changed their original business model, process, and product to face the dynamic change in the environment. The news of insurance companies in the business context becomes more important since the competitive relationship has been changed. Our research is dedicated to develop a system to assist users to make a simple organization when they find some information. We also design the with three functions: text summarization, interactive filtering visualization, and annotation with specified keywords to help users when they read the textual content. A lab experiment was conducted to evaluate our developed system with specified tasks and measure the different dimensions of our developed system comparing with subjects’ familiar way to find information. The findings of this study show the more productivity in our developed system, which our subjects can produce more summary content with our three designed functions. Besides, annotation tool and highlight text also help subjects when they read the textual content. With the subjective questionnaires, our systems are proved to be useful for users.
    Reference: Alt, R., Beck, R., & Smits, M. T. (2018). FinTech and the transformation of the financial industry. Electronic Markets, 28(3), 235-243. doi:10.1007/s12525- 018-0310-9
    Amarouche, K., Benbrahim, H., & Kassou, I. (2018). Customer product review summarization over time for competitive intelligence. Journal of Automation, Mobile Robotics and Intelligent Systems, 70-82.
    Anand, D., & Wagh, R. (2019). Effective deep learning approaches for summarization of legal texts. Journal of King Saud University - Computer and Information Sciences. doi:10.1016/j.jksuci.2019.11.015
    Aries, A., & Hidouci, W. K. (2019). Automatic text summarization: What has been done and what has to be done. arXiv preprint arXiv:1904.00688.
    Bathija, R., Agarwal, P., Somanna, R., & Pallavi, G. (2020). Guided interactive learning through chatbot using bi-directional encoder representations from transformers (bert). Paper presented at the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA).
    Berven, A., Christensen, O. A., Moldeklev, S., Opdahl, A. L., & Villanger, K. J. (2020). A knowledge-graph platform for newsrooms. Computers in Industry, 123, 103321.
    Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.
    Cagliero, L., Farinetti, L., & Baralis, E. (2019). Recommending Personalized Summaries of Teaching Materials. IEEE Access, 7, 22729-22739. doi:10.1109/access.2019.2899655
    Cao, S., Lyu, H., & Xu, X. (2020). InsurTech development: Evidence from Chinese media reports. Technological Forecasting and Social Change, 161. doi:10.1016/j.techfore.2020.120277
    Cappiello, A. (2018). Technology and the insurance industry: Re-configuring the competitive landscape: Springer.
    Cappiello, A. (2020). The Digital (R)evolution of Insurance Business Models. American Journal of Economics and Business Administration, 12(1), 1-13. doi:10.3844/ajebasp.2020.1.13
    Carbó‐Valverde, S., Cuadros‐Solas, P. J., Rodríguez‐Fernández, F., & EY. (2020). The effect of banks` IT investments on the digitalization of their customers. Global Policy, 11, 9-17.
    Chakraborti, S., & Dey, S. (2014). Multi-document text summarization for competitor intelligence: a methodology. Paper presented at the 2014 2nd International Symposium on Computational and Business Intelligence.
    Chouigui, A., Khiroun, O. B., & Elayeb, B. (2018). A TF-IDF and co-occurrence based approach for events extraction from arabic news corpus. Paper presented at the International Conference on Applications of Natural Language to Information Systems.
    Christian, H., Agus, M. P., & Suhartono, D. (2016). Single document automatic text summarization using term frequency-inverse document frequency (TF-IDF). ComTech: Computer, Mathematics and Engineering Applications, 7(4), 285- 294.
    Chung, W. (2014). BizPro: Extracting and categorizing business intelligence factors from textual news articles. International Journal of Information Management, 34(2), 272-284.
    Crescenzi, A., Capra, R., & Arguello, J. (2013). Time pressure, user satisfaction and task difficulty. Proceedings of the American Society for Information Science and Technology, 50(1), 1-4.
    Cui, W., Qu, H., Zhou, H., Zhang, W., & Skiena, S. (2012). Watch the story unfold with textwheel: Visualization of large-scale news streams. ACM Transactions on Intelligent Systems and Technology (TIST), 3(2), 1-17.
    Deshpande, A. R., & Lobo, L. (2013). Text summarization using clustering technique. International Journal of Engineering Trends and Technology, 4(8), 3348- 3351.
    Dumitru, I. (2019). Mutual Insurance Company-A New Company Form Regulated by Romanian Law and Its Possible Interactions with Public Administration. Persp. L. Pub. Admin., 8, 100.
    Egfjord, K. F.-H., & Sund, K. J. (2020). Do you see what I see? How differing perceptions of the environment can hinder radical business model innovation. Technological Forecasting and Social Change, 150, 119787.
    El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text summarization: A comprehensive survey. Expert Systems with Applications, 165. doi:10.1016/j.eswa.2020.113679
    Eling, M., & Lehmann, M. (2017). The Impact of Digitalization on the Insurance Value Chain and the Insurability of Risks. The Geneva Papers on Risk and Insurance - Issues and Practice, 43(3), 359-396. doi:10.1057/s41288-017- 0073-0
    Erera, S., Shmueli-Scheuer, M., Feigenblat, G., Nakash, O. P., Boni, O., Roitman, H., . . . Rivlin, O. (2019). A summarization system for scientific documents. arXiv preprint arXiv:1908.11152.
    Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of artificial intelligence research, 22, 457-479.
    Ernst, O., Caciularu, A., Shapira, O., Pasunuru, R., Bansal, M., Goldberger, J., & Dagan, I. (2021). A Proposition-Level Clustering Approach for Multi- Document Summarization. arXiv preprint arXiv:2112.08770.
    Filippova, K., Surdeanu, M., Ciaramita, M., & Zaragoza, H. (2009). Company- oriented extractive summarization of financial news. Paper presented at the Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009).
    Fromm, J. (2017). How Startup Lemonade Is Redefining Insurance for Millennials. In.
    Furner, C. P., & Zinko, R. A. (2016). The influence of information overload on the development of trust and purchase intention based on online product reviews in a mobile vs. web environment: an empirical investigation. Electronic Markets, 27(3), 211-224. doi:10.1007/s12525-016-0233-2
    Gambhir, M., & Gupta, V. (2016). Recent automatic text summarization techniques: a survey. Artificial Intelligence Review, 47(1), 1-66. doi:10.1007/s10462-016- 9475-9
    Garg, S. (2017). Automatic Text Summarization of Video Lectures Using Subtitles. In
    Recent Developments in Intelligent Computing, Communication and Devices
    (pp. 45-52).
    Gavrila, S. G., & de Lucas Ancillo, A. (2021). Spanish SMEs’ digitalization enablers: E-Receipt applications to the offline retail market. Technological Forecasting and Social Change, 162, 120381.
    Guillet, B. D., Mattila, A., & Gao, L. (2020). The effects of choice set size and information filtering mechanisms on online hotel booking. International Journal of Hospitality Management, 87, 102379.
    Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of emerging technologies in web intelligence, 1(1), 60- 76.
    Haghighi, A., & Vanderwende, L. (2009). Exploring content models for multi- document summarization. Paper presented at the Proceedings of human language technologies: The 2009 annual conference of the North American Chapter of the Association for Computational Linguistics.
    Hamborg, F., Meuschke, N., & Gipp, B. (2017). Matrix-based news aggregation: exploring different news perspectives. Paper presented at the 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).
    Haque, M., Pervin, S., & Begum, Z. (2013). Literature review of automatic multiple documents text summarization. International Journal of Innovation and Applied Studies, 3(1), 121-129.
    Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 75-105.
    Hienert, D. (2014). A model for the integration of interactive visualizations into the process of information searching and linking on the Web. Historical Social Research/Historische Sozialforschung, 179-192.
    Holland, C. (2022). Artificial Intelligence (AI) and Digital Transformation in the Insurance Market: A Case Study Analysis of BGL Group. Paper presented at the HICSS.
    Hu, Y.-H., Chen, Y.-L., & Chou, H.-L. (2017). Opinion mining from online hotel reviews – A text summarization approach. Information Processing & Management, 53(2), 436-449. doi:10.1016/j.ipm.2016.12.002
    Iso, W. (1998). 9241-11. Ergonomic requirements for office work with visual display terminals (VDTs). The international organization for standardization, 45(9).
    Kaffash, S., Azizi, R., Huang, Y., & Zhu, J. (2020). A survey of data envelopment analysis applications in the insurance industry 1993–2018. European Journal of Operational Research, 284(3), 801-813.
    Kallimani, J. S. (2018). Survey on extractive text summarization methods with multi- document datasets. Paper presented at the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI).
    Katie, B. (2021, September 30). Microsoft enters partnership with At-Bay. Reinsurance News. Retrieved from https://www.reinsurancene.ws/microsoft- enters-partnership-with-at-bay/
    Kim, M., Kim, I., Lee, M., & Jang, B. (2018). Worldwide emerging disease-related information extraction system from news data. Paper presented at the Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems.
    Köseoglu, M. A., Chan, E. S., Okumus, F., & Altin, M. (2019). How do hotels operationalize their competitive intelligence efforts into their management processes? Proposing a holistic model. International Journal of Hospitality Management, 83, 283-292.
    Kucher, K., & Kerren, A. (2015). Text visualization techniques: Taxonomy, visual survey, and community insights. Paper presented at the 2015 IEEE Pacific visualization symposium (pacificVis).
    Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. International Journal of Human‐Computer Interaction, 7(1), 57-78.
    Lin, W., Li, J., Yi, Z., Ji, B., Li, S., Yu, J., & Ma, J. (2021). A Unified Summarization Model with Semantic Guide and Keyword Coverage Mechanism. Paper presented at the International Conference on Artificial Neural Networks.
    Luke, G. (2021, August 2). AXA’s underlying earnings rise as AXA XL improves underwriting result. Reinsurance News.
    Maxwell, D., Azzopardi, L., & Moshfeghi, Y. (2017). A study of snippet length and informativeness: Behaviour, performance and user experience. Paper presented at the Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.
    Melinat, P., Kreuzkam, T., & Stamer, D. (2014). Information overload: a systematic literature review. Paper presented at the International Conference on Business Informatics Research.
    Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. Paper presented at the Proceedings of the 2004 conference on empirical methods in natural language processing.
    Mishra, R., Bian, J., Fiszman, M., Weir, C. R., Jonnalagadda, S., Mostafa, J., & Del Fiol, G. (2014). Text summarization in the biomedical domain: a systematic review of recent research. Journal of biomedical informatics, 52, 457-467.
    Mohd, M., Jan, R., & Shah, M. (2020). Text document summarization using word embedding. Expert Systems with Applications, 143, 112958.
    Moradi, M., Dorffner, G., & Samwald, M. (2020). Deep contextualized embeddings for quantifying the informative content in biomedical text summarization. Computer methods and programs in biomedicine, 184, 105117.
    Mustafina, A. A., Kaigorodova, G. N., Alyakina, P. D., Velichko, N. Y., & Zainullina, M. R. (2020). Digital Technology in Insurance. In Digital Transformation of the Economy: Challenges, Trends and New Opportunities (pp. 678-685).
    Nasar, Z., Jaffry, S. W., & Malik, M. K. (2019). Textual keyword extraction and summarization: State-of-the-art. Information Processing & Management, 56(6). doi:10.1016/j.ipm.2019.102088
    Okada, F. (2018). Business model changes through collaborative dynamic capabilities through insurance company use of IT (InsurTech) in the medical and health sectors. In Collaborative dynamic capabilities for service innovation (pp. 153- 162): Springer.
    Owen, R. K., Bradbury, N., Xin, Y., Cooper, N., & Sutton, A. (2019). MetaInsight: an interactive web‐based tool for analyzing, interrogating, and visualizing network meta‐analyses using R‐shiny and netmeta. Research synthesis methods, 10(4), 569-581.
    Özdemir, S. (2018). The Effect of Summarization Strategies Teaching on Strategy Usage and Narrative Text Summarization Success. Universal Journal of Educational Research, 6(10), 2199-2209. doi:10.13189/ujer.2018.061018
    Paranyushkin, D. (2019). InfraNodus: Generating insight using text network analysis. Paper presented at the The world wide web conference.
    Pisoni, G. (2020). Going digital: case study of an Italian insurance company. Journal of Business Strategy.
    Prismana, I. G. L. P. E., Prehanto, D. R., & Nuryana, I. K. D. (2020). The Design and Implementation of Web Crawler Distributed News Domain Detection System.Paper presented at the International Joint Conference on Science and Engineering (IJCSE 2020).
    Schmitt, J. B., Debbelt, C. A., & Schneider, F. M. (2018). Too much information? Predictors of information overload in the context of online news exposure. Information, Communication & Society, 21(8), 1151-1167.
    Scudder, R. A., & Kucic, A. R. (1991). Productivity measures for information systems. Information & management, 20(5), 343-354.
    Shah, C., & Jivani, A. (2016). Literature study on multi-document text summarization techniques. Paper presented at the International Conference on Smart Trends for Information Technology and Computer Communications.
    Shen, C.-w., Luong, T.-h., Ho, J.-t., & Djailani, I. (2020). Social media marketing of IT service companies: Analysis using a concept-linking mining approach. Industrial Marketing Management, 90, 593-604.
    Steinberger, J., & Jezek, K. (2009). Evaluation measures for text summarization. Computing and Informatics, 28(2), 251.
    Sujatha, C., Chivate, A. R., Ganihar, S. A., & Mudenagudi, U. (2013). Time driven video summarization using GMM. Paper presented at the 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG).
    Sun, X., Wang, P., Lei, Y., Liu, W., Yang, L., & Zhang, Z. (2018). A method for discovering and obtaining company hot events from Internet news. Paper presented at the 2018 IEEE International Conference on Progress in Informatics and Computing (PIC).
    Swink, M., & Song, M. (2007). Effects of marketing-manufacturing integration on new product development time and competitive advantage. Journal of operations management, 25(1), 203-217.
    Tahmasebifard, H. (2018). The role of competitive intelligence and its sub-types on achieving market performance. Cogent Business & Management, 5(1), 1540073.
    Tandel, A., Modi, B., Gupta, P., Wagle, S., & Khedkar, S. (2016). Multi-document text summarization-a survey. Paper presented at the 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE).
    Tijerina, J. D., Morrison, S. D., Vail, D. G., Lee, G. K., & Nazerali, R. (2019). The utility of Google Trends data for analyzing public interest in breast procedures. Annals of plastic surgery, 82(5S), S325-S331.
    Trippas, J. R., Spina, D., Sanderson, M., & Cavedon, L. (2015). Towards understanding the impact of length in web search result summaries over a speech-only communication channel. Paper presented at the Proceedings of the 38th international acm sigir conference on research and development in information retrieval.
    Uludağ, Ö., Reiter, N., & Matthes, F. (2021). Improving the collaboration between enterprise architects and agile teams: a multiple-case study. In Architecting the Digital Transformation (pp. 347-366): Springer.
    Verma, P., & Om, H. (2016). Extraction based text summarization methods on user’s review data: A comparative study. Paper presented at the International Conference on Smart Trends for Information Technology and Computer Communications.
    Vyas, V., Vyas, S., & Kundan, A. (2014). Management information system: information needs of organization. International Journal of Information & Computation Technology, 4(17), 1903-1908.
    Wang, B., Zhang, J., Liu, Y., & Zou, Y. (2017). Density peaks clustering based integrate framework for multi-document summarization. CAAI Transactions on Intelligence Technology, 2(1), 26-30.
    Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning, 52(3), 326-349.
    Wedi, A., Ulfa, S., Pakkawaru, A., & Bringula, R. (2020). Exploring the Implementation of Automatic Text Summarization in Online Learning Setting.Paper presented at the 1st International Conference on Information Technology and Education (ICITE 2020).
    Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., & Setiadi, D. R. I. M. (2020). Review of automatic text summarization techniques & methods. Journal of King Saud University - Computer and Information Sciences. doi:10.1016/j.jksuci.2020.05.006
    Yamamoto, Y., & Yamamoto, T. (2020). Personalization finder: A search interface for identifying and self-controlling web search personalization. Paper presented at the Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020.
    Yang, G., Wen, D., Kinshuk, Chen, N.-S., & Sutinen, E. (2012). Personalized Text Content Summarizer for Mobile Learning: An Automatic Text Summarization System with Relevance Based Language Model. Paper presented at the 2012 IEEE Fourth International Conference on Technology for Education.
    Yi, K., Guo, Y., Jiang, W., Wang, Z., & Sun, L. (2020). A dataset for exploring gaze behaviors in text summarization. Paper presented at the Proceedings of the 11th ACM Multimedia Systems Conference.
    Yuan, X., Sa, N., Begany, G., & Yang, H. (2015). What Users Prefer and Why: A User Study on Effective Presentation Styles of Opinion Summarization. In Human-Computer Interaction – INTERACT 2015 (pp. 249-264).
    Zhang, P.-y., & Li, C.-h. (2009). Automatic text summarization based on sentences clustering and extraction. Paper presented at the 2009 2nd IEEE international conference on computer science and information technology.
    Zhou, X., Wan, X., & Xiao, J. (2016). CMiner: Opinion Extraction and Summarization for Chinese Microblogs. IEEE Transactions on Knowledge and Data Engineering, 28(7), 1650-1663. doi:10.1109/tkde.2016.2541148
    Zhu, T., & Zhao, X. (2012). An improved approach to sentence ordering for multi- document summarization. Paper presented at the IACSIT Hong Kong Conferences, IACSIT Press, Singapore.
    Ziakis, C., Vlachopoulou, M., Kyrkoudis, T., & Karagkiozidou, M. (2019). Important factors for improving Google search rank. Future internet, 11(2), 32.
    Description: 碩士
    國立政治大學
    資訊管理學系
    109356031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109356031
    Data Type: thesis
    DOI: 10.6814/NCCU202201574
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    603101.pdf2613KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback