English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51595371      Online Users : 835
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/142028
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142028


    Title: Ultrahigh-dimensional sufficient dimension reduction for censored data with measurement error in covariates
    Authors: 陳立榜
    Chen, Li-Pang
    Contributors: 統計系
    Keywords: Cumulative mean estimation;dimension reduction;distance correlation;feature screening;measurement error;survival data;ultrahigh-dimension
    Date: 2020-11
    Issue Date: 2022-09-21 11:46:13 (UTC+8)
    Abstract: In this paper, we consider the ultrahigh-dimensional sufficient dimension reduction (SDR) for censored data and measurement error in covariates. We first propose the feature screening procedure based on censored data and the covariates subject to measurement error. With the suitable correction of mismeasurement, the error-contaminated variables detected by the proposed feature screening procedure are the same as the truly important variables. Based on the selected active variables, we develop the SDR method to estimate the central subspace and the structural dimension with both censored data and measurement error incorporated. The theoretical results of the proposed method are established. Simulation studies are reported to assess the performance of the proposed method. The proposed method is implemented to NKI breast cancer data.
    Relation: Journal of Applied Statistics, Vol.49, No.5, pp.1154-1178
    Data Type: article
    DOI 連結: https://doi.org/10.1080/02664763.2020.1856352
    DOI: 10.1080/02664763.2020.1856352
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2180View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback