政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141837
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51588393      在线人数 : 840
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141837


    题名: 強化深度學習對於自然語言處理的強韌度-以假新聞偵測為例
    Enhancing Deep Learning Robustness for Nature Language Processing : Fake News Detection as an Example
    作者: 余昊祥
    Yu, Hao-Hsiang
    贡献者: 胡毓忠
    Hu,Yuh­-Jong
    余昊祥
    Yu, Hao-Hsiang
    关键词: 假新聞偵測
    對抗式攻擊
    假新聞偵測
    Fake news detection
    Adversarial attack
    Adversarial Defence
    TextFooler
    日期: 2022
    上传时间: 2022-09-02 15:47:00 (UTC+8)
    摘要: 因為互聯網與社群媒體的推波助瀾,網路新聞已經成為重要的新聞來源。近幾年因為對抗式攻擊研究議題興起,使得運用深度學習模型偵測假新聞的辨識正確性備受挑戰。
    本研究嘗試透過 TF­IDF、TextRank、KeyBERT 等文字探勘方法,以及測試模型輸出 LogitOut 方法,找到文本中容易受到 TextFooler 擾動的標的,再將找到的關鍵單詞進行同義詞置換生成模擬對抗樣本,透過對抗式訓練的方式強化 BERT 假新聞判別器對於 TextFooler 攻擊的強韌度。實驗結果發現:(1) 文字探勘方法中 KeyBERT 較能找出 TextFooler 攻擊單詞,而模型輸出 LogitOut 又明顯優於文字探勘方法。(2) 關鍵字搜尋方法對於 TextFooler 攻擊單詞命中率越高,越能透過同義詞置換生成模擬對抗範例,並藉由訓練模擬對抗範例後提升 BERT 假新聞判別器對於 TextFooler 對抗式攻擊的強韌度。
    In recent years, the research of adversarial attack has emerged, making the fake news detection by using deep learning method challenging again.
    In this study, we try to increase the robustness of BERT fake news detector against TextFooler by training simulated adversarial samples. To generate simulated adversarial samples, we use both text mining method such as TF­IDF, TextRank, KeyBERT and method by testing model ouput (LogitOut) combining with synonyms replacement strategy. The experimental results found that (1) KeyBERT is more capable of identifying the attacked subject by TextFooler comparing with other text mining methods, and testing model
    output(LogitOut) method is much better than text mining methods. (2) The robustness of BERT fake news detector against TextFooler can be improved after adding the simulated adversarial examples mentioned above.
    參考文獻: [1] Nic Newman, Richard Fletcher, and David A. L. Levy, et al. digital-news­report­2016. Digital Journalism. https://reutersinstitute.politics.ox.ac.uk/
    our-research/digital-news-report-2016, 2016.
    [2] Edson C., Tandoc Jr., and Zheng Wei Lim, et al. Defining fake news. Digital Jour-nalism. https://doi.org/10.1080/21670811.2017.1360143, 2018.
    [3] Ashish Vaswani, Noam M. Shazeer, and Niki Parmar, et al. Attention is all you need.
    arXiv preprint arXiv:1706.03762, 2017.
    [4] Jacob Devlin, Ming­Wei Chang, and Kenton Lee, et al. Bert: Pre­training of deep bidirectional transformers for language understanding. arXiv preprint
    arXiv:1810.04805, 2019.
    [5] Haoming Guo, Tianyi Huan, and Huixuan Huang, et al. Detecting covid­19 conspir-acy theories with transformers and tf­idf. arXiv preprint arXiv:2205.00377, 2022.
    [6] Jin Di, Jin Zhijing, and Zhou Joey Tianyi, et al. Is bert really robust? natural language attack on text classification and entailment. arXiv preprint arXiv:1907.11932, 2019.
    [7] Shilin Qiu, Qihe Liu, and Shijie Zhou, et al. Adversarial attack and defense tech-nologies in natural language processing: A survey. Neurocomputing, 2022.
    [8] Ji Gao, Jack Lanchantin, and Mary Lou Soffa, et al. Black­box generation of adver-sarial text sequences to evade deep learning classifiers. In 2018 IEEE Security and
    Privacy Workshops (SPW). IEEE, 2018.
    [9] Robin Jia, Percy Liang. Adversarial examples for evaluating reading comprehension systems. arXiv preprint arXiv:1707.07328, 2017.
    [10] Zhihong Shao, Zitao Liu, and Jiyong Zhang, et al. Advexpander: Generating natu-ral language adversarial examples by expanding text. IEEE/ACM Transactions on
    Audio, Speech, and Language Processing, 2022.
    [11] Daniel Matthew Cer, Yinfei Yang, and Sheng­yi Kong, et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.
    [12] Mein Gunnar, Hartman Kevin, Morris Andrew. Firebert: Hardening bert­based clas-sifiers against adversarial attack. arXiv preprint arXiv:2008.04203, 2020.
    [13] Page Lawrence, Brin Sergey, and Motwani Rajeev, et al. The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.
    [14] Mihalcea Rada, Tarau Paul. Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing, 2004.
    [15] Grootendorst, Maarten. Keybert: Minimal keyword extraction with bert. [Internet].
    Available: https://maartengr. github. io/KeyBERT/index. html, 2020.
    [16] Nikola Mrksic, Diarmuid Ó Séaghdha, and Blaise Thomson, et al. Counter­fitting word vectors to linguistic constraints. In NAACL, 2016.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    106971008
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0106971008
    数据类型: thesis
    DOI: 10.6814/NCCU202201381
    显示于类别:[資訊科學系碩士在職專班] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100801.pdf3355KbAdobe PDF2193检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈