政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141743
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113303/144284 (79%)
造访人次 : 50814770      在线人数 : 570
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141743


    题名: 主題分析方法在經濟文獻學上的應用:隱含狄利克雷分配與代理人基計算經濟學
    Topic Analysis in the Automatic Organization of Economic Literature: The Case of Agent-Based Computational Economics with the Use of Latent Dirichlet Allocation
    作者: 胡瑞軒
    Hu, Ruei-Xsuan
    贡献者: 陳樹衡
    Chen, Shu-Heng
    胡瑞軒
    Hu, Ruei-Xsuan
    关键词: 代理人基建模
    非監督學習
    詞彙頻率-逆文檔頻率
    文字雲
    自然語言處理
    主題一致性
    主題相似度
    Agent-Based Modeling
    Unsupervised Learning
    TF-IDF
    Wordcloud
    NLP
    Topic coherence
    Topic similarity
    日期: 2022
    上传时间: 2022-09-02 15:26:59 (UTC+8)
    摘要: 本文將多個期刊的代理人基建模(Agent-Based Modeling, ABM) 的論文用主題模型中的隱含狄利克雷分配(Latent Dirichlet Allocation, LDA) 進行分類,接著用詞彙頻率-逆文檔頻率(Term Frequency-Inverse Document Frequency, TF-IDF) 與文字雲分別找出與該主題相關卻被過濾掉的詞彙以及主題之間的相同詞彙並且對於每個主題所屬的期刊進行分類並分析主題隨時間的變化。最後,主題相似度、主題排名與主題一致性分析結果顯示每個主題的重疊度不大,主題解釋比例與一致性都很高。本文有別於過往研究,進行多個期刊的分析以及分類之後的評估,主題相似度、主題排名與主題一致性評估方式顯示隱含狄利克雷分配模型能有效地量化具體的方式將文檔分類,且比人為的分類方式降低更多時間成本與資料複雜度。
    In this paper, we classify Agent-Based Modeling (ABM) papers in multiple journals with Latent Dirichlet Allocation (LDA) in topic model. By applying analyses of TF-IDF algorithm and word cloud, we recollect words related to the topic but filtered out in the first place and gather same words belonging to different topics. Also, we analyze the dynamics of topics in several journals over time. Finally, the results of topic similarity, topic ranking and topic consistency analysis show that each topic has little overlap, and the topic explanation ratio and consistency are high. Different from previous studies, we classify ABM papers in multiply journals and have further evaluations. The evaluation methods of topic similarity, topic ranking and topic consistency show that the implicit Dirichlet allocation model can effectively quantitatively classify documents. And it reduces more time cost and data complexity than artificial classification.
    參考文獻: [1] Ambrosino, A., Cedrini, M., Davis, J. B., Fiori, S. Guerzoni, M., & Nuccio, M. (2018). What topic modeling could reveal about the evolution of economics. Journal of Economic Methodology, 25(4), 329-348.
    [2] Alexakis, C., Doolig, M., Eleftheriou, K., & Polemis, M. (2020). Textual Machine Learning: An Application to Computational Economics Research. Computational Economics, 57(1), 369-385.
    [3] Blei, D. M., Jordan, M. I, & Ng, A. Y.. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3(2003), 993-1022.
    [4] Boyd-Graber, J., Hu, Y., & Mimno, D. (2017). Applications of topic models. Foundations and Trends in Information Retrieval, 11(2-3), 143–296.
    [5] Hannigan, T. R., Haans, R. F., Vakili, K., Tchalian, H., Glaser, V. L., Wang, M. S., et al. (2019). Topic modeling in management research: rendering new theory from textual data. Academy of Management Annals, 13(2), 586–632.
    [6] Hofmann, T. (1999). Probabilistic Latent Semantic Analysis. Proceedings of Conference on Uncertainty in Artificial Intelligence (UAI-99), Stockholm, 289-296.
    [7] Huang, A. H., Lehavy, R., Zang, A. Y., & Zheng, R. (2018). Analyst information discovery and interpretation roles: a topic modeling approach. Management Science, 64(6), 2833-2855.
    [8] Kao, Y. F., & Venkatachalam, R. (2018). Human and Machine Learning. Computational Economics, 57(4), 889-909.
    [9] Kumar, A., & Paul, A. (2016). Mastering Text Mining with R. UK:Packt Publishing Ltd.
    [10] Mimno, D., Leenders, M., McCallum, A., Talley, E., & Wallach, H. M. (2011). Optimizing Semantic Coherence in Topic Models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 262-272.
    [11] Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010). Automatic Evaluation of Topic Coherence. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, 100-108.
    [12] Papadimitriou, C. H., Raghavan, P., Tamaki, H., & Vempala, S. (1999). Latent Semantic Indexing: A Probabilistic Analysis. Journal of Computer and System Sciences, 61(2), 217-235.
    [13] Polyakov, M., Chalak, M., Iftekhar, M. S., Pandit, R., Tapsuwan, S., Zhang, F., & Ma, C. (2017). Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015. Environmental and Resource Economics volume 71(1), 217-239.
    [14] Piepenbrink, A., & Nurmammadov, E. (2015). Topics in the literature of transition economies and emerging markets. Scientometrics, 102(3), 2107-2130.
    [15] Tesfatsion, L. (2021). Agent-Based Computational Economics: Overview and Brief History. Working Paper 21004, Department of Economics, Iowa State University.
    [16] Tesfatsion, L. (2022, January 1). Agent-Based Computational Economics(ACE). Intro Materials and Research Area Sites. http://www2.econ.iastate.edu/tesfatsi/aapplic.htm
    描述: 碩士
    國立政治大學
    經濟學系
    109258032
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109258032
    数据类型: thesis
    DOI: 10.6814/NCCU202201265
    显示于类别:[經濟學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    803201.pdf19713KbAdobe PDF2114检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈