Reference: | Ahuja, J., & Webster, J. (2001). Perceived disorientation: An examination of a new measure to assess web design effectiveness. Interacting with Computers, 14(1), 15–29. https://doi.org/10.1016/s0953-5438(01)00048-0 Aiello, L., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., & Menczer, F. (2012). Friendship prediction and homophily in social media. ACM Transactions on the Web, 6(2), 1–33. https://doi.org/10.1145/2180861.2180866 Ajovalasit, S., Dorgali, V., Mazza, A., D’Onofrio, A., & Manfredi, P. (2021). Evidence of disorientation towards immunization on online social media after contrasting political communication on vaccines. Results from an analysis of Twitter data in Italy. PLOS ONE, 16(7), e0253569. https://doi.org/10.1371/journal.pone.0253569 Anspach, N. (2017). The new personal influence: How our Facebook friends influence the news we read. Political Communication, 34(4), 590–606. https://doi.org/10.1080/10584609.2017.1316329 Aral, S., & Walker, D. (2014). Tie strength, embeddedness, and social influence: A large-scale networked experiment. Management Science, 60(6), 1352–1370. https://doi.org/10.1287/mnsc.2014.1936b Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. Beaudoin, C. (2008). Explaining the relationship between internet use and interpersonal trust: Taking into account motivation and information overload. Journal of Computer-Mediated Communication, 13(3), 550–568. https://doi.org/10.1111/j.1083-6101.2008.00410.x Bontcheva, K., Gorell, G., & Wessels, B. (2013). Social media and information overload: Survey results. Cornell University Library. Published. Boutyline, A., & Willer, R. (2016). The social structure of political echo chambers: variation in ideological homophily in online networks. Political Psychology, 38(3), 551–569. https://doi.org/10.1111/pops.12337 Cao, Q., Lu, Y., Dong, D., Tang, Z., & Li, Y. (2013). The roles of bridging and bonding in social media communities. Journal of the American Society for Information Science and Technology, 64(8), 1671–1681. https://doi.org/10.1002/asi.22866 Chang, S., & Ley, K. (2006). A learning strategy to compensate for cognitive overload in online learning: Learner use of printed online materials. Journal of Interactive Learning, 5(1), 104–116. Chen, V. (2020). Examining news engagement on Facebook: Effects of news content and social networks on news engagement. Mass Communication and Society, 23(6), 833–857. https://doi.org/10.1080/15205436.2020.1798462 Choi, J. (2016). News internalizing and externalizing. Journalism & Mass Communication Quarterly, 93(4), 816–835. https://doi.org/10.1177/1077699016628812 Chopik, W., Bremmer, R., Johnson, D., & Giasson, L. (2018). Age differences in age perceptions and development transitions. Personality and Social Psychology https://doi.org/10.3389/fpsyg.2018.00067 de Salve, A., Guidi, B., Ricci, L., & Mori, P. (2018). Discovering homophily in online social networks. Mobile Networks and Applications, 23(6), 1715–1726. https://doi.org/10.1007/s11036-018-1067-2 Comrey, A., & Lee, H. (1992). A first course in factor analysis. Hillsdale, NJ: Erlbaum Dahiru, T., (2008). P-value: A true test pf statistical significance? A cautionary noute. PMC PubMed Central. https://doi.org/10.4314/aipm.v6i1.64038 Dearing, J., & Rogers, E. (1996). Agenda-Setting (communication concepts). SAGE Publications, Inc. di Gangi, P., & Wasko, M. (2016). Social media engagement theory. Journal of Organizational and End User Computing, 28(2), 53–73. https://doi.org/10.4018/joeuc.2016040104 Dolan, R., Conduit, J., Fahy, J., & Goodman, S. (2015). Social media engagement behaviour: A uses and gratifications perspective. Journal of Strategic Marketing, 24(3–4), 261–277. https://doi.org/10.1080/0965254x.2015.1095222 Eryilmaz, E., Thoms, B., Ahmed, Z., & Lee, K. H. (2019). Affordances of recommender systems for disorientation in large online conversations. Journal of Computer Information Systems, 61(3), 229–239. https://doi.org/10.1080/08874417.2019.1590165 Eveland, W., & Dunwoody, S. (2001). User control and structural isomorphism or disorientation and cognitive load? Communication Research, 28(1), 48–78. https://doi.org/10.1177/009365001028001002 Fisher, C. (2016). The trouble with ‘trust’ in news media. Communication Research and Practice, 2(4), 451–465. https://doi.org/10.1080/22041451.2016.1261251 Fisher RA. Nig J Paediatr. London: Oliver and Boyd; 1950. Statistical methods for research workers; p. 80. Flanagin, A., Hocevar, K., & Samahito, S. (2013). Connecting with the user-generated web: How group identification impacts online information sharing and evaluation. Information, Communication & Society, 17(6), 683–694. https://doi.org/10.1080/1369118x.2013.808361 Friedkin, N. (1982). Information flow through strong and weak ties in intraorganizational social networks. Social Networks, 3(4), 273–285. https://doi.org/10.1016/0378-8733(82)90003x Fu, S., Li, H., Liu, Y., Pirkkalainen, H., & Salo, M. (2020). Social media overload, exhaustion, and use discontinuance: Examining the effects of information overload, system feature overload, and social overload. Information Processing & Management, 57(6), 102307. https://doi.org/10.1016/j.ipm.2020.102307 Gao, J., Zhang, C., Wang, K., & Ba, S. (2012). Understanding online purchase decision making: The effects of unconscious thought, information quality, and information quantity. Decision Support Systems, 53(4), 772–781. https://doi.org/10.1016/j.dss.2012.05.011 Gil de Zúñiga, H., & Valenzuela, S. (2011). The mediating path to a stronger citizenship: Online and offline networks, weak ties, and civic engagement. Communication Research, 38(3), 397-421. Gil De Zúñiga, H., Weeks, B., & Ardèvol-Abreu, A. (2017). Effects of the news-finds-me perception in communication: Social media use implications for news seeking and learning about politics. Journal of Computer-Mediated Communication, 22(3), 105–123. https://doi.org/10.1111/jcc4.12185 Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. CHI ’09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 211–220. https://doi.org/10.1145/1518701.1518736 Global Web Index (2020). Coronavirus Research Multi-market research https://www.gwi.com/hubfs/1.%20Coronavirus%20Research%20PDFs/GWI%20coronavirus%20findings%20March%202020%20-%20Multi-Market%20data%20(Release%203).pdf Golbeck, J. (2009). Trust and nuanced profile similarity in online social networks. ACM Transactions on the Web, 3(4), 1–33. https://doi.org/10.1145/1594173.1594174 Haselhuhn, P., Kennedy, J., & Kray, L. (2015). Gender difference in trust dynamics: Women trust more than men following a trust violation. Journal of Experimental Psychology, 56(104–109). Hermida, A., Fletcher, F., Korell, D., & Logan, D. (2012). Share, like, recommend. Journalism Studies, 13(5–6), 815–824. https://doi.org/10.1080/1461670x.2012.664430 Hocevar, K. P., Flanagin, A. J., & Metzger, M. J. (2014). Social media self-efficacy and information evaluation online. Computers in Human Behavior, 39, 254–262. https://doi.org/10.1016/j.chb.2014.07.020 Holton, A., & Chyi, H. (2012). News and the overloaded consumer: Factors influencing information overload among news consumers. Cyberpsychology, Behavior, and Social Networking, 15(11), 619–624. https://doi.org/10.1089/cyber.2011.0610 Hussain, W. (2020). Role of social media in Covid-19 pandemic. The International Journal of Frontier Sciences, 4(2), 59–60. https://doi.org/10.37978/tijfs.v4i2.144 Ji, Q., Ha, L., & Sypher, U. (2014). The role of news nedia use and demographic characteristics in the prediction of information overload. International Journal of Communication. Published. Jones, S. L., & Kelly, R. (2017). Dealing with information overload in multifaceted personal informatics systems. Human–Computer Interaction, 33(1), 1–48. https://doi.org/10.1080/07370024.2017.1302334 Kaakinen, M., Sirola, A., Savolainen, I., & Oksanen, A. (2018). Shared identity and shared information in social media: Development and validation of the identity bubble reinforcement scale. Media Psychology, 23(1), 25–51. https://doi.org/10.1080/15213269.2018.1544910 Kaiser, J., Keller, T. R., & Kleinen-von Königslöw, K. (2018). Incidental news exposure on Facebook as a social experience: The influence of recommender and media cues on news selection. Communication Research, 48(1), 77–99. https://doi.org/10.1177/0093650218803529 Kemp, S. (2020). Digital 2020: July Global Statshot. DataReportal https://datareportal.com/reports/digital-2020-july-global-statshot Khan, M. L. (2017). Social media engagement: What motivates user participation and consumption on YouTube? Computers in Human Behavior, 66, 236–247. https://doi.org/10.1016/j.chb.2016.09.024 Kirsh, D. (2000). A few thoughts on cognitive overload. Intellectica. Revue de l’Association Pour La Recherche Cognitive, 30(1), 19–51. https://doi.org/10.3406/intel.2000.1592 Koroleva, K., Krasnova, H., & Günther, O. (2010). `STOP SPAMMING ME!` - Exploring information overload on Facebook In M. Santana & J. Luftman (Eds.). Proceedings 2010 Americas Conference on Information Systems. Association for Information Systems. https://aisel.aisnet.org/amcis2010/?utm_source=aisel.aisnet.org%2Famcis2010%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages Koroleva, K., Stimac, V., Krasnova, H., & Kunze, D. (2011). I like IT because I(`m) like you - measuring user attitudes towards information on Facebook. In D. Galletta & T. Liang (Eds.). Proceedings of the International Conference on Information Systems. Association for Information Systems. https://www.semanticscholar.org/paper/I-like-IT-Because-I-(`M)-like-You-Measuring-User-on-Koroleva-Stimac/77d001397ba0befb9c73d79b84b2ab6b3fd32168 Koroleva, K., & Stimac, V. (2012). Tie strength vs. network overlap: Why Information from lovers is more valuable than from close friends on social network sites? Proceeding Thirty Third International Conference on Information Systems. AIS Library. https://aisel.aisnet.org/icis2012/proceedings/DigitalNetworks/15/ Koroleva, K., & Bolufé, A. (2012). Reducing information overload: Design and evaluation of filtering & ranking algorithms for social networking sites. Proceedings 2012 European Conference on Information Systems. AIS Library. https://aisel.aisnet.org/ecis2012/12/ Kümpel, A. S. (2020). The Matthew effect in social media news use: Assessing inequalities in news exposure and news engagement on social network sites (SNS). Journalism, 21(8), 1083–1098. https://doi.org/10.1177/1464884920915374 Lee, S., Lindsey, N., & Kim, K. (2017). The effects of news consumption via social media and news information overload on perceptions of journalistic norms and practices. Computers in Human Behavior, 75, 254–263. https://doi.org/10.1016/j.chb.2017.05.007 Lehmann, J., Lalmas, M., Yom-Tov, E., & Dupret, G. (2012). Models of user engagement. User Modeling, Adaptation, and Personalization, 164–175. https://doi.org/10.1007/978-3-642-31454-4_14 Leonard, R., & Onyx, J. (2003). Networking through loose and strong ties: An Australian qualitative study. International Journal of Voluntary and Nonprofit Organizations, 14(2), 189–203. https://doi.org/10.1023/a:1023900111271 Levin, D., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477–1490. https://doi.org/10.1287/mnsc.1030.0136 Liang, H., & Fu, K. W. (2016). Information overload, similarity, and redundancy: Unsubscribing information sources on Twitter. Journal of Computer-Mediated Communication, 22(1), 1–17. https://doi.org/10.1111/jcc4.12178 Liu, H., Lim, E. P., Lauw, H. W., Le, M. T., Sun, A., Srivastava, J., & Kim, Y. A. (2008). Predicting trusts among users of online communities. Proceedings of the 9th ACM Conference on Electronic Commerce - EC ’08. Computer Science. https://www.semanticscholar.org/paper/Predicting-trusts-among-users-of-online-an-epinions-Liu-Lim/a651f82b86a8833551ac5d389a15127c050c8a80 Liu, J., Rau, P., & Wendler, N. (2014). Trust and online information-sharing in close relationships: a cross-cultural perspective. Behaviour & Information Technology, 34(4), 363–374. https://doi.org/10.1080/0144929x.2014.937458 Ma, L., Lee, C., & Hoe-Lian, D. (2014). Understanding news sharing in social media. Online Information Review, 38(5), 598–615. https://doi.org/10.1108/oir-10-2013-0239 McCay, L., & Quan, A. (2016). A model of social media engagement: User profiles, gratifications, and experiences. Why Engagement Matters, 199–217. https://doi.org/10.1007/978-3-319-27446-1_9 McPherson, M., Smith-Lovin, L., & Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415 Metzger, M., & Flanagin, A. (2013). Credibility and trust of information in online environments: The use of cognitive heuristics. Journal of Pragmatics, 59, 210–220. https://doi.org/10.1016/j.pragma.2013.07.012 Metzger, M., Flanagin, A., & Medders, R. (2010). Social and heuristic approaches to credibility evaluation online. Journal of Communication, 60(3), 413–439. https://doi.org/10.1111/j.1460-2466.2010.01488.x Mitchell, T., Chen, S., & Macredie, R. (2005). Cognitive styles and adaptive web-based learning. Psychology of Education Review, 34–42. Mitchell, V., & Papavassiliou, V. (1999). Marketing causes and implications of consumer confusion. Journal of Product & Brand Management, 8(4), 319–342. https://doi.org/10.1108/10610429910284300 Mohammed, M., Sha’aban, A., Jatau, A. I., Yunusa, I., Isa, A. M., Wada, A. S., Obamiro, K., Zainal, H., & Ibrahim, B. (2021). Assessment of Covid-19 information overload among the general public. Journal of Racial and Ethnic Health Disparities. Published. https://doi.org/10.1007/s40615-020-00942-0 Morris, M., Teevan, J., & Panovich, K. (2010). What do people ask their social networks, and why?: A survey study of status message Q&A behavior. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. O’Brien, H. L. (2011). Exploring user engagement in online news interactions. Proceedings of the American Society for Information Science and Technology, 48(1), 1–10. https://doi.org/10.1002/meet.2011.14504801088 Oeldorf-Hirsch, A. (2017). The role of engagement in learning from active and incidental news exposure on social media. Mass Communication and Society, 21(2), 225–247. https://doi.org/10.1080/15205436.2017.1384022 Özkan, E., & Tolon, M. (2015). The effects of information overload on consumer confusion: An examination on user generated content. Bogazici Journal, 29(1), 27–51. https://doi.org/10.21773/boun.29.1.2 Pentina, I., & Tarafdar, M. (2014). From “information” to “knowing”: Exploring the role of social media in contemporary news consumption. Computers in Human Behavior, 35, 211–223. https://doi.org/10.1016/j.chb.2014.02.045 Olmstead, K., Mitchell, A., & Rosentiel, T. (2011). Where people go, how they get there and what lures them away. Pew Research Center https://www.pewresearch.org/journalism/2011/05/09/navigating-news-online/ Smith, A. (2015, April). U.S. Smartphone Use in 2015. Pew Research Center https://www.pewresearch.org/internet/2015/04/01/us-smartphone-use-in-2015/ Qiu, M., & McDougall, D. (2015). Influence of group configuration on online discourse reading. Computers & Education, 87, 151–165. https://doi.org/10.1016/j.compedu.2015.04.006 Ruttun, R., & Macredie, R. (2012). The effects of individual differences and visual instructional aids on disorientation, learning performance and attitudes in a hypermedia learning system. Computers in Human Behavior, 28(6), 2182–2198. https://doi.org/10.1016/j.chb.2012.06.026 Schick, A., Gordon, L., & Haka, S. (1990). Information overload: A temporal approach. Accounting, Organizations and Society, 15(3), 199–220. https://doi.org/10.1016/0361-3682(90)90005-f Schivinski, B., Christodoulides, G., & Dabrowski, D. (2016). Measuring consumers’ engagement with brand-related social-media content. Journal of Advertising Research, 56(1), 64–80. https://doi.org/10.2501/jar-2016-004 Schmitt, J. B., Debbelt, C. A., & Schneider, F. M. (2017). Too much information? predictors of information overload in the context of online news exposure. Information, Communication & Society, 21(8), 1151–1167. https://doi.org/10.1080/1369118x.2017.1305427 Schweizer, M., Kotouc, A., & Wagne, T. (2006). Scale Development for consumer confusion. Advances in Consumer Research, 33, 184–188. Shih, Y., Huang, P., Hsu, Y., & Chen, S. (2012). A complete understanding of disorientation problems in web-based learning. The Turkish Online Journal of Educational Technology, 11(3). Sin, S., & Vakkari, P. (2015). Perceived outcomes of public libraries in the US. Library and Information Science Research, 37(3), 209–219. https://doi.org/10.1108/jd-02-2013-0016 Sohn, D., & Choi, S. (2019). Social embeddedness of persuasion: Effects of cognitive social structures on information credibility assessment and sharing in social media.International Journal of Advertising, 38(6), 824–844. https://doi.org/10.1080/02650487.2018.1536507 Sterrett, D., Malato, D., Benz, J., Kantor, L., Tompson, T., Rosenstiel, T., Sonderman, J., & Loker, K. (2019). Who shared it?: Deciding what news to trust on social media. Digital Journalism, 7(6), 783–801. https://doi.org/10.1080/21670811.2019.1623702 Strekalova, Y. A. (2016). Health risk information engagement and amplification on social media. Health Education & Behavior, 44(2), 332–339. https://doi.org/10.1177/1090198116660310 Tang, J., Gao, H., Hu, X., & Liu, H. (2013). Exploiting homophily effect for trust prediction. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining - WSDM ’13, 53–62. https://doi.org/10.1145/2433396.2433405 Thelwall, M. (2009). Homophily in MySpace. Journal of the American Society for Information Science and Technology, 60(2), 219–231. https://doi.org/10.1002/asi.20978 Toon, J. (2010, September 16). News media coverage reduces pandemic impact, model shows. Georgia Tech Research. https://rh.gatech.edu/news/61014/news-media-coverage-reduces-pandemic-impact-model-shows Walsh. G., & Mitchell, V. (2008). The effect of consumer confusion proness on word of mouth, trust, and customer satisfaction. European Journal of Marketing, 44(6), 838-859. Walter, F., Battiston, S., & Schweitzer, F. (2008). Coping with information overload through trust-based networks. In Managing Complexity: Insights, Concepts, Applications (p. 273–300). Springer. https://doi.org/10.1007/978-3-540-75261-5_13 Wang, Y., Wang, X., & Zuo, W. L. (2015). Research on trust prediction from a sociological perspective. Journal of Computer Science and Technology, 30(4), 843–858. https://doi.org/10.1007/s11390-015-1564-8 Webster, J., & Ahuja, J. (2006). Enhancing the design of web navigation systems: The influence of user disorientation on engagement and performance. MIS Quarterly, 30(3), 661. https://doi.org/10.2307/25148744 York, C. (2013). Overloaded by the news: Effects of news exposure and enjoyment on reporting information overload. Communication Research Reports, 30(4), 282–292. https://doi.org/10.1080/08824096.2013.836628 Zhang, X., Ding, X., Wang, G., & Ma, L. (2018). Investigating the influences of social overload and task complexity on user engagement decrease. Total Quality Management & Business Excellence, 31(15–16), 1774–1787. https://doi.org/10.1080/14783363.2018.1509698 Zhao, N., & Zhou, G. (2021). COVID-19 Stress and Addictive Social Media Use (SMU): Mediating Role of Active Use and Social Media Flow. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2021.63554 |