English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50941379      Online Users : 930
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/141640
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141640


    Title: 生命專線對談自適應重點萃取進行自殺意念分析
    Self-Adapted Utterance Selection for Suicidal Ideation Analysis in Lifeline Conversations
    Authors: 王中伶
    Wang, Zhong-Ling
    Contributors: 黃瀚萱
    Huang, Hen-Hsen
    王中伶
    Wang, Zhong-Ling
    Keywords: 生命專線
    自殺意念偵測
    自適應重點萃取
    對話理解
    自然語言處理
    Lifeline
    Suicidal Ideation Detection
    Self-Adapted Utterance Selection
    Conversation Understanding
    Natural Language Processing
    Date: 2022
    Issue Date: 2022-09-02 15:05:19 (UTC+8)
    Abstract: 近年來,心理健康逐漸受到重視,尤其致命性的自殺議題更得到關注,臺灣安心專線針對該議題提供民眾免費撥打服務,透過通話方式給予來電者心理方面的建議及協助,本論文進而透過對談內容,進行自殺意念風險分析。
    本論文之資料集來自安心專線真實個案,由心理專業團隊聽寫成文本,再經專家依照個案的自殺意念狀況進行分類。由於社工與來電者的對談內容冗長又充滿雜訊,不利機器學習模型預測,因此,基於自然語言處理技術,本論文提出自適應萃取方法,將對談中擁有重要特徵及資訊的句子萃取出來並將其串接,再利用該縮減內容,預測自殺意念風險。實驗結果顯示,本方法於各風險類別得出最高效能,且被萃取出來的句子得以進行可解釋性的語意分析。此外,針對自殺防治,以提早偵測任務於各對談上進行測試,期望在對談中,能越早發現來電者的需求並及時給予適當的資源,降低社工的負擔。
    最後,除了自殺議題之外,我們希望將本方法廣泛應用至不同領域,達成重點內容萃取、資料長度縮減,進而提升效能且更有效率地進行語意分析,因此,以航空客服及電影影評資料集進行實驗,且驗證本方法適合的使用情境。
    Our work investigates an important issue in mental healthcare, suicidal ideation detection in the phone-call conversations of Taiwan Lifeline. The conversation between the caller and the counsellor is often long, noisy, and covering diverse topics, making the model challenged to classify the suicidal ideation of the caller. To facilitate the NLP model for suicidal ideation detection, we propose a novel self-adapted approach that aims to select the critical utterances that are easier for the underlying NLP model to discriminate. The real-world Lifeline transcriptions labeled by experts are adopted in experiments. Experimental results show the effectiveness of our approach in overall performance improvement. The selected utterances can also be regarded as explanation information. The early detection is effective for our study of suicide prevention. Not limited to the healthcare domain, our approach is applied to the flight booking state classification on the AirDialogue dataset and sentiment binary classification on IMDb and Polarity datasets to explore the suitable scenario for general applications.
    Reference: [1] Sheri L. Johnson Ann M. Kring. Abnormal Psychology, chapter Mood Disorders. Wiley, 2017. ISBN 978-1-119-39523-2.
    [2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv:2004.05150, 2020.
    [3] Chieh-Yang Chen, Pei-Hsin Wang, Shih-Chieh Chang, Da-Cheng Juan, Wei Wei, and Jia-Yu Pan. AirConcierge: Generating task-oriented dialogue via efficient large-scale knowledge retrieval. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 884–897, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.79. URL https://aclanthology.org/2020.findings-emnlp.79.
    [4] Glen Coppersmith, Ryan Leary, Patrick Crutchley, and Alex Fine. Natural language processing of social media as screening for suicide risk. Biomedical informatics insights, 10:1178222618792860, 2018.
    [5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre- training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.
    [6] Shahla Farzana, Mina Valizadeh, and Natalie Parde. Modeling dialogue in conversational cognitive health screening interviews. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 1167–1177, Marseille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL https://aclanthology.org/2020.lrec-1.147.
    [7] Manas Gaur, Amanuel Alambo, Joy Prakash Sain, Ugur Kursuncu, Krishnaprasad Thirunarayan, Ramakanth Kavuluru, Amit Sheth, Randy Welton, and Jyotishman Pathak. Knowledge-aware assessment of severity of suicide risk for early intervention. In The World Wide Web Conference, WWW ’19, page 514–525, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313698. URL https://doi.org/10.1145/3308558.3313698.
    [8] ”Jonathan Gratch, Ron Artstein, Gale Lucas, Giota Stratou, Stefan Scherer, Angela Nazarian, Rachel Wood, Jill Boberg, David Devault, Stacy Marsella, David Traum, Albert ””Skip”” Rizzo, and Louis-Philippe Morency”. The distress analysis inter- view corpus of human and computer interviews. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, may 2014. European Language Resources Association (ELRA). ISBN 978-2-9517408-8-4.
    [9] Nancy Green, Curry Guinn, and Ronnie Smith. Assisting social conversation be- tween persons with Alzheimer’s disease and their conversational partners. In Proceedings of the Third Workshop on Speech and Language Processing for Assistive Technologies, pages 37–46, Montréal, Canada, June 2012. Association for Computational Linguistics. URL https://aclanthology.org/W12-2906.
    [10] Shaoxiong Ji, Shirui Pan, Xue Li, Erik Cambria, Guodong Long, and Zi Huang. Suicidal ideation detection: A review of machine learning methods and applications. IEEE Transactions on Computational Social Systems, 8(1):214–226, 2021. doi: 10. 1109/TCSS.2020.3021467.
    [11] Miaofeng Liu, Yan Song, Hongbin Zou, and Tong Zhang. Reinforced training data selection for domain adaptation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1957–1968, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1189. URL https://aclanthology.org/P19-1189.
    [12] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/ P11-1015.
    [13] Rohan Mishra, Pradyumn Prakhar Sinha, Ramit Sawhney, Debanjan Mahata, Puneet Mathur, and Rajiv Ratn Shah. SNAP-BATNET: Cascading author profiling and social network graphs for suicide ideation detection on social media. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 147–156, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-3019. URL https://www.aclweb.org/anthology/N19-3019.
    [14] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), pages 271–278, Barcelona, Spain, July 2004. doi: 10.3115/1218955.1218990. URL https://aclanthology.org/P04-1035.
    [15] Alex Rinaldi, Jean Fox Tree, and Snigdha Chaturvedi. Predicting depression in screening interviews from latent categorization of interview prompts. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7–18, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.2. URL https://aclanthology.org/2020.acl-main.2.
    [16] Ramit Sawhney, Harshit Joshi, Saumya Gandhi, and Rajiv Ratn Shah. Towards ordinal suicide ideation detection on social media. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pages 22–30, 2021.
    [17] Annika Marie Schoene, Alexander Turner, Geeth Ranmal De Mel, and Nina Dethlefs. Hierarchical multiscale recurrent neural networks for detecting suicide notes. IEEE Transactions on Affective Computing, pages 1–1, 2021. doi: 10.1109/TAFFC.2021. 3057105.
    [18] Faisal Muhammad Shah, Farsheed Haque, Ragib Un Nur, Shaeekh Al Jahan, and Zarar Mamud. A hybridized feature extraction approach to suicidal ideation detection from social media post. In 2020 IEEE Region 10 Symposium (TENSYMP), pages 985–988, 2020. doi: 10.1109/TENSYMP50017.2020.9230733.
    [19] Tan Thongtan and Tanasanee Phienthrakul. Sentiment classification using document embeddings trained with cosine similarity. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics: Student Research Workshop, pages 407–414, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-2057. URL https://aclanthology.org/P19-2057.
    [20] Wei Wei, Quoc Le, Andrew Dai, and Jia Li. AirDialogue: An environment for goal-oriented dialogue research. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3844–3854, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1419. URL https://aclanthology.org/D18-1419.
    [21] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data augmentation for consistency training. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
    [22] Zhongzhi Xu, Yucan Xu, Florence Cheung, Mabel Cheng, Daniel Lung, Yik Wa Law, Byron Chiang, Qingpeng Zhang, and Paul S.F. Yip. Detecting suicide risk us- ing knowledge-aware natural language processing and counseling service data. Social Science Medicine, 283:114176, 2021. ISSN 0277-9536. doi: https://doi.org/10. 1016/j.socscimed.2021.114176. URL https://www.sciencedirect.com/science/ article/pii/S0277953621005086.
    [23] Hannah Yao, Sina Rashidian, Xinyu Dong, Hongyi Duanmu, Richard N Rosenthal, and Fusheng Wang. Detection of suicidality among opioid users on reddit: Machine learning–based approach. J Med Internet Res, 22(11):e15293, Nov 2020. ISSN 1438-8871. doi: 10.2196/15293. URL http://www.jmir.org/2020/11/e15293/.
    [24] Pingyue Zhang, Mengyue Wu, Heinrich Dinkel, and Kai Yu. Depa: Self-supervised audio embedding for depression detection. In Proceedings of the 29th ACM International Conference on Multimedia, pages 135–143, 2021.
    Description: 碩士
    國立政治大學
    資訊科學系
    109753106
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109753106
    Data Type: thesis
    DOI: 10.6814/NCCU202201360
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    310601.pdf1891KbAdobe PDF284View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback