Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/141609
|
Title: | 使用詮釋資料轉譯影像特徵之自動化醫學影像報告 Automated Medical Imaging Reports by Utilizing Metadata to Translate Image Features |
Authors: | 陳惠如 Chen, Hui-Ru |
Contributors: | 羅崇銘 Lo, Chung-Ming 陳惠如 Chen, Hui-Ru |
Keywords: | 詮釋資料 影像特徵 自動化醫學影像報告 Metadata Image features Automated medical imaging reports |
Date: | 2022 |
Issue Date: | 2022-09-02 14:58:19 (UTC+8) |
Abstract: | 隨著現代醫學借助醫學影像協助臨床醫生進行治療評估,撰寫醫學影像報告的需求隨之增加,醫生工作負荷量超載。病患轉診時,無規範格式的醫學影像報告,也會因為每個人書寫的習慣不同而難以作為溝通工具。再者,大多數的報告缺乏考量非醫學專業患者的需求,患者可能無法全盤理解報告內容,且報告產生往往需要漫長的等待,延遲獲取醫學影像報告可能會破壞患者參與度或醫病關係。 因此,本研究從醫學數位影像及通訊(digital imaging and communications in medicine, DICOM)中自動擷取姓名、病歷號、性別、年齡、出生日期、檢查日期、檢查時間、檢查地點、檢查項目及檢查儀器等DICOM tag,依不同醫學報告需求參照報告系統(reporting and data systems, RADS)建立的結構化術語描述醫學影像的資訊,並結合腫瘤位置、腫瘤大小、腫瘤形狀、腫瘤方位、腫瘤邊緣、腫瘤內部型態、腫瘤後方呈現等人工智慧輔助診斷的影像特徵,以及影像特徵在臨床上可能對應的診斷,再由Panofsky-Shatford 圖像分析理論剖析以及Jörgensen歸納的屬性進行資訊整合,設計一款醫學影像詮釋資料模板。 最終將所得資訊填入系統預先定義的醫學影像詮釋資料模板中,自動產生一份完整的醫學影像報告。醫學影像詮釋資料模板分為醫生版本及一般版本以供不同背景的使用者使用,希冀能即時協助醫生進行診斷,減去撰寫報告的時間,降低醫生工作壓力,亦有望透過清晰詳細的醫學影像報告,避免病患或其家屬不了解病況,維持醫生和患者之間的信任關係,並改善醫病之間互動與溝通。 此外,為評估醫學影像詮釋資料模板報告是否能有效協助一般大眾更了解醫學影像報告,於社群平台上發放問卷,總共回收100份問卷。經探索性因素分析法分析問卷,構面因素負荷量皆大於0.5,具有建構效度,且整體問卷Cronbach`s Alpha為0.916,亦具有信度。問卷分析結果顯示,不論任何性別、年齡或學歷,對於醫學影像詮釋資料模板報告態度皆無顯著的差異,都認同醫學影像詮釋資料模板報告能協助理解醫學影像的內容。 As modern medicine relies on medical imaging to assist clinicians in evaluating treatment, the need to write medical imaging reports increases, and physicians are overloaded with workloads. When patients are referred, medical imaging reports in non-standard formats will also be difficult to use as a communication tool due to the different writing habits of each person. Furthermore, most reports do not take into account the needs of non-medical patients, patients may not fully understand the content of the report, and the generation of medical imaging reports often requires to wait a long time, and thus delaying access to medical imaging reports may disrupt patient participation or the relationship between doctors and patients. Therefore, this study automatically extracts DICOM tags from digital imaging and communications in medicine (DICOM), such as patient`s name, ID, sex, age, birth date, study date, study time, institution name, study description, modality, etc. According to different medical reporting requirements, this study refers to the structured terms established by reporting and data systems (RADS) to describe the information of medical images, and combine the image features of AI-assisted diagnosis such as tumor location, size, shape, orientation, margin, echo pattern, posterior features, etc., as well as the possible clinical diagnosis of the imaging features. Then, the information is integrated by the theoretical analysis of Panofsky-Shatford image analysis and the attributes summarized by Jörgensen to design a medical imaging metadata template. Finally, the obtained information is filled into the medical imaging metadata template predefined by the system, and a complete medical imaging report is automatically generated. Medical imaging metadata template are presented as physician version and general version for users of different backgrounds. It is hoped that it can immediately assist the doctors in the diagnosis, reduce the time for writing the report, and alleviate the pressure of the doctor. It is also hoped that the clear and detailed medical imaging report can be used to prevent patients or their families from ignoring the condition, maintain the trust relationship between doctors and patients, and improve the interaction and communication between doctors and patients. In addition, in order to evaluate whether the medical imaging metadata template report can effectively help the general public better understand the medical imaging report, a questionnaire was distributed on the community platform, and a total of 100 questionnaires were collected. The questionnaire was analyzed by exploratory factor analysis: the factor loadings are all greater than 0.5, which has construct validity, and the overall questionnaire Cronbach`s Alpha is 0.916, which also has reliability. The results of questionnaire analysis showed that regardless of gender, age or educational background, there is nonsignificant difference in attitude towards the medical imaging metadata template report, and all agreed that it can help understand the content of medical images. |
Reference: | Al-Haj, A. (2015). Providing integrity, authenticity, and confidentiality for header and pixel data of DICOM images. J Digit Imaging, 28(2), 179-187. https://doi.org/10.1007/s10278-014-9734-8 Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin, 67(2), 93-99. https://doi.org/10.3322/caac.21388 An, J. Y., Unsdorfer, K. M. L., & Weinreb, J. C. (2019). BI-RADS, C-RADS, CAD-RADS, LI-RADS, Lung-RADS, NI-RADS, O-RADS, PI-RADS, TI-RADS: Reporting and Data Systems. RadioGraphics, 39(5), 1435-1436. https://doi.org/10.1148/rg.2019190087 Ariño, A. (2003). Measures of strategic alliance performance: an analysis of construct validity. Journal of International Business Studies, 34(1), 66-79. https://doi.org/10.1057/palgrave.jibs.8400005 Bernardi, R., Cakici, R., Elliott, D., Erdem, A., Erdem, E., Ikizler-Cinbis, N., Keller, F., Muscat, A., & Plank, B. (2016). Automatic description generation from images: A survey of models, datasets, and evaluation measures. Journal of Artificial Intelligence Research, 55, 409-442. Bizzo, B. C., Almeida, R. R., & Alkasab, T. K. (2021). Computer-Assisted Reporting and Decision Support in Standardized Radiology Reporting for Cancer Imaging. JCO Clin Cancer Inform, 5, 426-434. https://doi.org/10.1200/cci.20.00129 Brown, M. S., Chu, G. H., Kim, H. J., Allen-Auerbach, M., Poon, C., Bridges, J., Vidovic, A., Ramakrishna, B., Ho, J., Morris, M. J., Larson, S. M., Scher, H. I., & Goldin, J. G. (2012). Computer-aided quantitative bone scan assessment of prostate cancer treatment response. Nucl Med Commun, 33(4), 384-394. https://doi.org/10.1097/MNM.0b013e3283503ebf Caffery, L. J., Clunie, D., Curiel-Lewandrowski, C., Malvehy, J., Soyer, H. P., & Halpern, A. C. (2018). Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards. J Digit Imaging, 31(4), 568-577. https://doi.org/10.1007/s10278-017-0045-8 Çağlayan, B., İliaz, S., Bulutay, P., Armutlu, A., Uzel, I., & Öztürk, A. B. (2020). The role of endobronchial ultrasonography elastography for predicting malignancy. Turk Gogus Kalp Damar Cerrahisi Derg, 28(1), 158-165. https://doi.org/10.5606/tgkdc.dergisi.2020.18508 Candelaria, R. P., Hwang, L., Bouchard, R. R., & Whitman, G. J. (2013). Breast Ultrasound: Current Concepts. Seminars in Ultrasound, CT and MRI, 34(3), 213-225. https://doi.org/https://doi.org/10.1053/j.sult.2012.11.013 Chan, H. P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Deep Learning in Medical Image Analysis. Adv Exp Med Biol, 1213, 3-21. https://doi.org/10.1007/978-3-030-33128-3_1 Chen, J. Y., Schmidt, T. M. S., Carr, C. D., & Charles E. Kahn, J. (2017). Enabling the Next-Generation Radiology Report: Description of Two New System Standards. RadioGraphics, 37(7), 2106-2112. https://doi.org/10.1148/rg.2017160106 Cooper, K., Heilbrun, M. E., Gilyard, S., Vey, B. L., & Kadom, N. (2020). Shared Decision Making: Radiology`s Role and Opportunities. AJR Am J Roentgenol, 214(1), W62-w66. https://doi.org/10.2214/ajr.19.21590 de Winter, J. C. F., Dodou*, D., & Wieringa, P. A. (2009). Exploratory Factor Analysis With Small Sample Sizes. Multivariate Behavioral Research, 44(2), 147-181. https://doi.org/10.1080/00273170902794206 Delrue, L., Gosselin, R., Ilsen, B., Van Landeghem, A., de Mey, J., & Duyck, P. (2011). Difficulties in the Interpretation of Chest Radiography. In E. E. Coche, B. Ghaye, J. de Mey, & P. Duyck (Eds.), Comparative Interpretation of CT and Standard Radiography of the Chest (pp. 27-49). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79942-9_2 DuBenske, L. L., Schrager, S. B., Hitchcock, M. E., Kane, A. K., Little, T. A., McDowell, H. E., & Burnside, E. S. (2018). Key Elements of Mammography Shared Decision-Making: a Scoping Review of the Literature. J Gen Intern Med, 33(10), 1805-1814. https://doi.org/10.1007/s11606-018-4576-6 E. Beaudoin, J. (2014). A framework of image use among archaeologists, architects, art historians and artists. Journal of Documentation, 70(1), 119-147. https://doi.org/10.1108/JD-12-2012-0157 Erickson, B., & Greenes, R. A. (2014). Imaging Systems in Radiology. In E. H. Shortliffe & J. J. Cimino (Eds.), Biomedical Informatics: Computer Applications in Health Care and Biomedicine (pp. 593-611). Springer London. https://doi.org/10.1007/978-1-4471-4474-8_20 European Society of Radiology (ESR) (2018). ESR paper on structured reporting in radiology. Insights Imaging, 9(1), 1-7. https://doi.org/10.1007/s13244-017-0588-8 Forner, D., Noel, C. W., Shuman, A. G., Hong, P., Corsten, M., Rac, V. E., Pieterse, A. H., & Goldstein, D. (2020). Shared Decision-making in Head and Neck Surgery: A Review. JAMA Otolaryngology–Head & Neck Surgery, 146(9), 839-844. https://doi.org/10.1001/jamaoto.2020.1601 Fornetti, J., Welm, A. L., & Stewart, S. A. (2018). Understanding the Bone in Cancer Metastasis. J Bone Miner Res, 33(12), 2099-2113. https://doi.org/10.1002/jbmr.3618 Ganeshan, D., Duong, P.-A. T., Probyn, L., Lenchik, L., McArthur, T. A., Retrouvey, M., Ghobadi, E. H., Desouches, S. L., Pastel, D., & Francis, I. R. (2018). Structured Reporting in Radiology. Academic Radiology, 25(1), 66-73. https://doi.org/https://doi.org/10.1016/j.acra.2017.08.005 Gerald, B. (2018). A brief review of independent, dependent and one sample t-test. International Journal of Applied Mathematics and Theoretical Physics, 4(2), 50-54. Gillard, J. (2020). One-way analysis of variance (anova). In A First Course in Statistical Inference (pp. 91-101). Springer. Godinho, T. M., Lebre, R., Almeida, J. R., & Costa, C. (2019). ETL Framework for Real-Time Business Intelligence over Medical Imaging Repositories. Journal of digital imaging, 32(5), 870-879. https://doi.org/10.1007/s10278-019-00184-5 Godinho, T. M., Viana-Ferreira, C., Silva, L. A. B., & Costa, C. (2016). A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories. IEEE Journal of Biomedical and Health Informatics, 20(1), 367-375. https://doi.org/10.1109/JBHI.2014.2361633 Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound Med Biol, 44(1), 37-70. https://doi.org/10.1016/j.ultrasmedbio.2017.09.012 Haltaufderheide, J., Wäscher, S., Bertlich, B., Vollmann, J., Reinacher-Schick, A., & Schildmann, J. (2019). "I need to know what makes somebody tick …": Challenges and Strategies of Implementing Shared Decision-Making in Individualized Oncology. Oncologist, 24(4), 555-562. https://doi.org/10.1634/theoncologist.2017-0615 He, H. Y., Chen, J. L., Ma, H., Zhu, J., Wu, D. D., & Lv, X. D. (2017). Value of Endobronchial Ultrasound Elastography in Diagnosis of Central Lung Lesions. Med Sci Monit, 23, 3269-3275. https://doi.org/10.12659/msm.901808 Hodosh, M., Young, P., & Hockenmaier, J. (2013). Framing image description as a ranking task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research, 47, 853-899. Holder, J., Tocino, I., Facchini, D., Nardecchia, N., Staib, L., Crawley, D., & Pahade, J. K. (2021). Current state of radiology report release in electronic patient portals. Clin Imaging, 74, 22-26. https://doi.org/10.1016/j.clinimag.2020.12.020 Hristova, S. (2017). Notes on the iconography of mediated gestures. HAU: Journal of Ethnographic Theory, 7(1), 415-422. https://doi.org/10.14318/hau7.1.028 Huang, Q., Luo, Y., & Zhang, Q. (2017). Breast ultrasound image segmentation: a survey. Int J Comput Assist Radiol Surg, 12(3), 493-507. https://doi.org/10.1007/s11548-016-1513-1 Hussain, S., Mubeen, I., Ullah, N., Shah, S., Khan, B. A., Zahoor, M., Ullah, R., Khan, F. A., & Sultan, M. A. (2022). Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. Biomed Res Int, 2022, 5164970. https://doi.org/10.1155/2022/5164970 IARC. (2020, December 15). Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. International Agency for Research on Cancer. https://www.iarc.who.int/wp-content/uploads/2020/12/pr292_E.pdf Izquierdo, I., Olea, J., & Abad, F. J. (2014). Exploratory factor analysis in validation studies: uses and recommendations. Psicothema, 26(3), 395-400. https://doi.org/10.7334/psicothema2013.349 Jörgensen, C. (1998). Attributes of images in describing tasks. Information Processing & Management, 34(2-3), 161-174. Jansen, B. J. (2008). Searching for digital images on the web [Article]. Journal of Documentation, 64(1), 81-101. https://doi.org/10.1108/00220410810844169 Jing, B., Xie, P., & Xing, E. (2017). On the automatic generation of medical imaging reports. arXiv preprint arXiv:1711.08195. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151. Klavans, J. L., LaPlante, R., & Golbeck, J. (2014). Subject matter categorization of tags applied to digital images from art museums. Journal of the Association for Information Science and Technology, 65(1), 3-12. https://doi.org/10.1002/asi.22950 Klenczon, W., & Rygiel, P. (2013). Librarian Cornered by Images, or How to Index Visual Resources. Cataloging & Classification Quarterly, 52(1), 42-61. https://doi.org/10.1080/01639374.2013.848123 Kovacs, M. D., Cho, M. Y., Burchett, P. F., & Trambert, M. (2019). Benefits of Integrated RIS/PACS/Reporting Due to Automatic Population of Templated Reports. Curr Probl Diagn Radiol, 48(1), 37-39. https://doi.org/10.1067/j.cpradiol.2017.12.002 Laal, M. (2013). Innovation process in medical imaging. Procedia-Social and Behavioral Sciences, 81, 60-64. Larobina, M., & Murino, L. (2014). Medical image file formats. J Digit Imaging, 27(2), 200-206. https://doi.org/10.1007/s10278-013-9657-9 Lauriot Dit Prevost, A., Trencart, M., Gaillard, V., Bouzille, G., Besson, R., Sharma, D., Puech, P., & Chazard, E. (2021). ICIPEMIR: Improving the Completeness, Interoperability and Patient Explanations of Medical Imaging Reports. Stud Health Technol Inform, 281, 422-426. https://doi.org/10.3233/shti210193 Lee, C. I., Lehman, C. D., & Bassett, L. W. (2018). Breast imaging. Leong, S., Shaipanich, T., Lam, S., & Yasufuku, K. (2013). Diagnostic bronchoscopy--current and future perspectives. J Thorac Dis, 5 Suppl 5(Suppl 5), S498-510. https://doi.org/10.3978/j.issn.2072-1439.2013.09.08 Liew, C. (2018). The future of radiology augmented with Artificial Intelligence: A strategy for success. European Journal of Radiology, 102, 152-156. https://doi.org/https://doi.org/10.1016/j.ejrad.2018.03.019 Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22 140, 55-55. Luo, W. Q., Huang, Q. X., Huang, X. W., Hu, H. T., Zeng, F. Q., & Wang, W. (2019). Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS. Sci Rep, 9(1), 11921. https://doi.org/10.1038/s41598-019-48488-4 Macedo, F., Ladeira, K., Pinho, F., Saraiva, N., Bonito, N., Pinto, L., & Goncalves, F. (2017). Bone Metastases: An Overview. Oncol Rev, 11(1), 321. https://doi.org/10.4081/oncol.2017.321 Mantri, M., Taran, S., & Sunder, G. (2020). DICOM Integration Libraries for Medical Image Interoperability: A Technical Review. IEEE Reviews in Biomedical Engineering, 1-1. https://doi.org/10.1109/RBME.2020.3042642 Marcovici, P. A., & Taylor, G. A. (2014). Journal Club: Structured radiology reports are more complete and more effective than unstructured reports. AJR Am J Roentgenol, 203(6), 1265-1271. https://doi.org/10.2214/ajr.14.12636 McDonald, R. J., Schwartz, K. M., Eckel, L. J., Diehn, F. E., Hunt, C. H., Bartholmai, B. J., Erickson, B. J., & Kallmes, D. F. (2015). The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol, 22(9), 1191-1198. https://doi.org/10.1016/j.acra.2015.05.007 Menard, E., & Smithglass, M. (2012). Digital image description: a review of best practices in cultural institutions [Review]. Library Hi Tech, 30(2), 291-309. https://doi.org/10.1108/07378831211239960 MOHW. (2021). Annual Report of Medical Care Institution & Hospital Utilization 2020. Ministry of Health and Welfare. Moon, W. K., Lo, C.-M., Cho, N., Chang, J. M., Huang, C.-S., Chen, J.-H., & Chang, R.-F. (2013). Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Computer Methods and Programs in Biomedicine, 111(1), 84-92. https://doi.org/https://doi.org/10.1016/j.cmpb.2013.03.017 Mungas, D., Heaton, R., Tulsky, D., Zelazo, P. D., Slotkin, J., Blitz, D., Lai, J.-S., & Gershon, R. (2014). Factor Structure, Convergent Validity, and Discriminant Validity of the NIH Toolbox Cognitive Health Battery (NIHTB-CHB) in Adults. Journal of the International Neuropsychological Society, 20(6), 579-587. https://doi.org/10.1017/S1355617714000307 Mvududu, N. H., & Sink, C. A. (2013). Factor Analysis in Counseling Research and Practice. Counseling Outcome Research and Evaluation, 4(2), 75-98. https://doi.org/10.1177/2150137813494766 NEMA. (2021). PS3.1: DICOM PS3.1 2021e - Introduction and Overview. NEMA. https://dicom.nema.org/medical/dicom/current/output/pdf/part01.pdf O`Sullivan, G. J., Carty, F. L., & Cronin, C. G. (2015). Imaging of bone metastasis: An update. World J Radiol, 7(8), 202-211. https://doi.org/10.4329/wjr.v7.i8.202 OECD. (2018a). Computed tomography (CT) exams https://doi.org/doi:https://doi.org/10.1787/3c994537-en OECD. (2018b). Magnetic resonance imaging (MRI) exams https://doi.org/doi:https://doi.org/10.1787/1d89353f-en Oh, S. C., Cook, T. S., & Kahn, C. E., Jr. (2016). PORTER: a Prototype System for Patient-Oriented Radiology Reporting. Journal of digital imaging, 29(4), 450-454. https://doi.org/10.1007/s10278-016-9864-2 Panunzio, A., & Sartori, P. (2020). Lung Cancer and Radiological Imaging. Curr Radiopharm, 13(3), 238-242. https://doi.org/10.2174/1874471013666200523161849 Pieterse, A. H., & Finset, A. (2019). Shared decision making—Much studied, much still unknown. Patient Education and Counseling, 102(11), 1946-1948. https://doi.org/https://doi.org/10.1016/j.pec.2019.09.006 Qu, J. Y., Li, Z., Su, J. R., Ma, M. J., Xu, C. Q., Zhang, A. J., Liu, C. X., Yuan, H. P., Chu, Y. L., Lang, C. C., Huang, L. Y., Lu, L., Li, Y. Q., & Zuo, X. L. (2020). Development and Validation of an Automatic Image-Recognition Endoscopic Report Generation System: A Multicenter Study. Clin Transl Gastroenterol, 12(1), e00282. https://doi.org/10.14309/ctg.0000000000000282 Reicher, J., Currie, S., & Birchall, D. (2018). Safety of working patterns among UK neuroradiologists: what can we learn from the aviation industry and cognitive science? The British Journal of Radiology, 91(1084), 20170284. https://doi.org/10.1259/bjr.20170284 Reiner, B. I. (2009). The challenges, opportunities, and imperative of structured reporting in medical imaging. J Digit Imaging, 22(6), 562-568. https://doi.org/10.1007/s10278-009-9239-z Reiner, B. I., & Krupinski, E. (2012). The insidious problem of fatigue in medical imaging practice. J Digit Imaging, 25(1), 3-6. https://doi.org/10.1007/s10278-011-9436-4 Riley, J. (2017). Understanding metadata. Washington DC, United States: National Information Standards Organization (https://groups.niso.org/apps/group_public/download.php/17446/Understanding%20Metadata.pdf), 23. Rocha, D. M., Brasil, L. M., Lamas, J. M., Luz, G. V. S., & Bacelar, S. S. (2020). Evidence of the benefits, advantages and potentialities of the structured radiological report: An integrative review. Artif Intell Med, 102, 101770. https://doi.org/10.1016/j.artmed.2019.101770 Rodríguez-Cristerna, A., Gómez-Flores, W., & de Albuquerque Pereira, W. C. (2018). A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Comput Methods Programs Biomed, 153, 33-40. https://doi.org/10.1016/j.cmpb.2017.10.004 Rorissa, A. (2008). User-generated descriptions of individual images versus labels of groups of images: A comparison using basic level theory. Information Processing & Management, 44(5), 1741-1753. https://doi.org/10.1016/j.ipm.2008.03.004 Rorissa, A. (2010). A Comparative Study of Flickr Tags and Index Terms in a General Image Collection [Article]. Journal of the American Society for Information Science and Technology, 61(11), 2230-2242. https://doi.org/10.1002/asi.21401 Scott, J. A., & Palmer, E. L. (2015). Radiology reports: a quantifiable and objective textual approach. Clinical Radiology, 70(11), 1185-1191. https://doi.org/https://doi.org/10.1016/j.crad.2015.06.080 Sharma, P., Suehling, M., Flohr, T., & Comaniciu, D. (2020). Artificial Intelligence in Diagnostic Imaging: Status Quo, Challenges, and Future Opportunities. Journal of Thoracic Imaging, 35, S11-S16. https://doi.org/10.1097/rti.0000000000000499 Shatford, S. (1986). Analyzing the Subject of a Picture: A Theoretical Approach. Cataloging & Classification Quarterly, 6(3), 39-62. https://doi.org/10.1300/J104v06n03_04 Shrestha, N. (2021). Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4-11. Spak, D. A., Plaxco, J. S., Santiago, L., Dryden, M. J., & Dogan, B. E. (2017). BI-RADS® fifth edition: A summary of changes. Diagnostic and Interventional Imaging, 98(3), 179-190. https://doi.org/https://doi.org/10.1016/j.diii.2017.01.001 Taherdoost, H. (2016). Validity and reliability of the research instrument; how to test the validation of a questionnaire/survey in a research. How to test the validation of a questionnaire/survey in a research (August 10, 2016). Tousch, A.-M., Herbin, S., & Audibert, J.-Y. (2012). Semantic hierarchies for image annotation: A survey. Pattern Recognition, 45(1), 333-345. https://doi.org/10.1016/j.patcog.2011.05.017 Varma, D. R. (2012). Managing DICOM images: Tips and tricks for the radiologist. Indian J Radiol Imaging, 22(1), 4-13. https://doi.org/10.4103/0971-3026.95396 Wallis, A., Edey, A., Prothero, D., & McCoubrie, P. (2013). The Bristol Radiology Report Assessment Tool (BRRAT): developing a workplace-based assessment tool for radiology reporting skills. Clin Radiol, 68(11), 1146-1154. https://doi.org/10.1016/j.crad.2013.06.019 Wang, J., Zheng, S., Ding, L., Liang, X., Wang, Y., Greuter, M. J. W., de Bock, G. H., & Lu, W. (2020). Is Ultrasound an Accurate Alternative for Mammography in Breast Cancer Screening in an Asian Population? A Meta-Analysis. Diagnostics (Basel), 10(11). https://doi.org/10.3390/diagnostics10110985 Wang, X. G., Song, N. Y., Zhang, L., & Jiang, Y. Y. (2018). Understanding subjects contained in Dunhuang mural images for deep semantic annotation [Article]. Journal of Documentation, 74(2), 333-353. https://doi.org/10.1108/jd-03-2017-0033 Watkins, M. W. (2018). Exploratory Factor Analysis: A Guide to Best Practice. Journal of Black Psychology, 44(3), 219-246. https://doi.org/10.1177/0095798418771807 Watson, J. C. (2017). Establishing Evidence for Internal Structure Using Exploratory Factor Analysis. Measurement and Evaluation in Counseling and Development, 50(4), 232-238. https://doi.org/10.1080/07481756.2017.1336931 Wilson, C. D., & Probe, R. A. (2020). Shared Decision-making in Orthopaedic Surgery. J Am Acad Orthop Surg, 28(23), e1032-e1041. https://doi.org/10.5435/jaaos-d-20-00556 Winget, M. (2009). Describing art: an alternative approach to subject access and interpretation [Article]. Journal of Documentation, 65(6), 958-976. https://doi.org/10.1108/00220410910998942 Yoon, J. (2011). Searching images in daily life [Article]. Library & Information Science Research, 33(4), 269-275. https://doi.org/10.1016/j.lisr.2011.02.003 Zhao, Z., Pi, Y., Jiang, L., Xiang, Y., Wei, J., Yang, P., Zhang, W., Zhong, X., Zhou, K., Li, Y., Li, L., Yi, Z., & Cai, H. (2020). Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep, 10(1), 17046. https://doi.org/10.1038/s41598-020-74135-4 Zhi, X., Wang, L., Chen, J., Zheng, X., Li, Y., & Sun, J. (2020). Scoring model of convex probe endobronchial ultrasound multimodal imaging in differentiating benign and malignant lung lesions. J Thorac Dis, 12(12), 7645-7655. https://doi.org/10.21037/jtd-2020-abpd-005 Zhou, B., Yang, X., Zhang, X., Curran, W. J., & Liu, T. (2020). Ultrasound Elastography for Lung Disease Assessment. IEEE Trans Ultrason Ferroelectr Freq Control, 67(11), 2249-2257. https://doi.org/10.1109/tuffc.2020.3026536 Zhou, L. Q., Wang, J. Y., Yu, S. Y., Wu, G. G., Wei, Q., Deng, Y. B., Wu, X. L., Cui, X. W., & Dietrich, C. F. (2019). Artificial intelligence in medical imaging of the liver. World J Gastroenterol, 25(6), 672-682. https://doi.org/10.3748/wjg.v25.i6.672 |
Description: | 碩士 國立政治大學 圖書資訊與檔案學研究所 109155001 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109155001 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202201250 |
Appears in Collections: | [圖書資訊與檔案學研究所] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
500101.pdf | | 3522Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|