English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50932267      Online Users : 961
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/141566
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141566


    Title: 應用文字探勘與機器學習於企業永續之分析
    Application of text mining and machine learning in the analysis of corporate sustainability
    Authors: 王嘉萍
    Wang, Chia-Ping
    Contributors: 楊曉文
    Yang, Hsiao-Wen
    王嘉萍
    Wang, Chia-Ping
    Keywords: 文字探勘
    機器學習
    ESG永續
    社會責任報告書
    數據分析
    text mining
    machine learning
    ESG sustainability
    corporate sustainability report
    data analysis
    Date: 2022
    Issue Date: 2022-09-02 14:50:04 (UTC+8)
    Abstract: 近年因為新冠肺炎疫情,國際掀起了一波重視ESG主題的熱潮,也有愈來愈多研究指出ESG因素能影響投資表現,並且考慮ESG因素有望幫投資人帶來更佳的風險調整後的報酬表現,身為ESG領頭的歐盟,更是在近年積極推動各種ESG的相關規範以及約束,尤其是對於金融業與重污染的產業特別關注。國際間也開始陸續出現共識去遵從幾個被廣泛認可的原則或規範,例如赤道原則(Equator Principles,縮寫EPs)、氣候相關財務揭露(Task Force on Climate-related Financial Disclosures,縮寫TCFD)、碳揭露專案(Carbon Disclosure Project,縮寫CDP)等等。
    隨著世界各地對ESG的重視,國際間也出現了許多ESG的評級機構,最為知名幾家有MSCI(Morgan Stanley Capital International)、FTSE Russell、Sustainalytics等等,可惜的是這些機構評級的評分標準不全然相同,有時做出來的評級結果差異頗大。目前,國際尚未發展出一套擁有共識、全世界遵守的ESG關鍵績效指標(KPI),對於此塊領域仍在摸索和調整中。
    現今,台灣企業也努力想要跟進國際趨勢,並對永續議題貢獻一份力,可惜因為起步較晚,多數台灣企業的ESG數據、評級資訊常有缺失及不夠全面等問題,也導致不好判別出哪些是趁機「漂綠」的黑心企業,讓真正想投資ESG的投資者無所適從。
    因此本研究想要參考國內外已有的論文基礎,從台灣企業資料較完整的社會責任報告書去提取出有用的ESG資訊,利用文字探勘先將企業社會責任報告書中的文字擷取,再使用機器學習的技術去將文字做分類,最終期許能有效地推論出此企業ESG成績的好壞,使投資者或利害關係人不用苦於無企業的ESG評級數據,能藉由此研究的成果去進行決策考量之判斷。
    In recent years, due to COVID-19, there has been a wave of international attention to ESG topics, and more and more studies have pointed out that ESG factors can affect investment performance, and considering ESG factors is expected to help investors bring better risk-adjusted return performance. In recent years, the European Union, which is the leader of ESG, has actively promoted various ESG-related norms and constraints, especially in the financial industry and heavily polluting industries. Consensus has also emerged internationally to comply with several widely recognized principles or norms, such as the Equator Principles (EPs), Task Force on Climate-related Financial Disclosures (TCFD), carbon disclosures Project (Carbon Disclosure Project, abbreviated CDP) and so on.
    With the emphasis on ESG around the world, many ESG rating agencies have emerged internationally. The most well-known ones are MSCI (Morgan Stanley Capital International), FTSE Russell, Sustainalytics, etc. It is a pity that the rating standards of these agencies are not the same.Sometimes the ratings are quite different. At present, the world has not yet developed a set of ESG key performance indicators (KPIs) that have a consensus and are followed by the world, and are still being explored and adjusted.
    Therefore, this study intends to refer to the existing papers at domestic and abroad to extract useful ESG information from the corporate sustainability report with relatively complete information of Taiwanese companies. Using machine learning technology to classify text, it hoped that it can effectively infer the ESG performance of the company, so that investors or stakeholders do not have to suffer from the ESG rating data of no company, and can use the results of this research to make judgments for decision-making considerations.
    Reference: 莊佳達(民110)。商業銀行金融科技運用與銀行績效提升程度之關係-財務文字
    探勘與無監督分類之應用。國立中山大學財務管理學系碩士論文,未出版。
    廖智偉(民102)。運用文字探勘技術分析台灣企業社會責任書之綠色科技資訊
    之有效性研究。國立中正大學資訊研究所碩士論文,未出版。
    謝松文(民99)。以文字探勘技術萃取財務報告書之附註說明。國立中正大學,
    會記與資訊科技研究所碩士論文,未出版。
    蘇筱涵(民110)。運用文字探勘探究致股東報告書影響企業價值之因素:以台積
    電公司為例。亞洲大學會計與資訊學系碩士論文,未出版。
    Ah-Hwee Tan(2000,November).Text Mining:The state of the art and the challenges.
    Retrieved from https://www.researchgate.net/publication/2471634_Text_Mining_The_state_of_the_art_and_the_challenges
    Amir Mohammad Shahi, Biju Issac and Jashua Rajesh Modapothala(2014,March 2014).
    Automatic Analysis of Corporate Susstainability Reports and Intelligent Scoring.International Journal of Computational Intelligence and Applications 13(1).
    CARLOS M. PARRA(2008, July). Quality of Life Markets: Capabilities and
    Corporate Social Responsibility. Journal of Human Development, Vol. 9, No. 2., pp. 207-227
    Caterina De Lucia , Pasquale Pazienza and Mark Bartlett (2020, July). Does Good
    ESG Lead to Better Financial Performances by Firms? Machine Learning and Logistic Regression Models of Public Enterprises in Europe. Sustainability 2020, 12(13), 5317.
    European Commission(2019, November). The European Green Deal.
    Government Pension Investment Fund, GPIF(2017, July). Results of ESG Index
    Selection,11.
    Jochen Dörre, Peter Gerstl and Roland Seiffert (1999). Text Mining:Finding Nuggets
    in Mountains of Textual Data. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining: ACM, pp. 398-401.
    Monica Chiarini Tremblay, Arturo Castellanos and Carlos M Parra(2015,
    August).Corporate Social Responsibility Reports: Understanding Topics via Text Mining. Twenty-first Americas Conference on Information Systems, Puerto Rico, 2015.
    Quyen Nguyen, Ivan Diaz-Rainey, Duminda Kuruppuarachchi(2021,
    January) .Predicting Corporate Carbon Footprints for Climate Finance Risk Analyses: A Machine Learning Approach. Energy Economics 95 (2021) 105129.
    Roy Henriksson, Joshua Livnat, Patrick Pfeifer, and Margaret
    Stumpp(2019).Integrating ESG in Portfolio Construction Resource. Journal of Portfolio Management.
    Sonia Jane Dickinson, Donna Louise Gill, Maya Purushothaman and Arno
    Scharl(2008). A Web Analysis of Sustainability Reporting: An Oil and Gas Perspective. Journal of Website Promotion, Vol. 3(3/4), pp. 161-182.
    Sustainability Accounting Standards Board(2022). Materiality Map. Retrieved from
    https://www.sasb.org/standards/materiality-map/
    Wan Te Liew , Arief Adhitya and Rajagopalan Srinivasan(2014, January).
    Sustainability trends in the process industries: A text mining-based analysis. Computers in Industry 65 (2014) , pp. 393–400.
    Description: 碩士
    國立政治大學
    金融學系
    109352001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109352001
    Data Type: thesis
    DOI: 10.6814/NCCU202201245
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200101.pdf2042KbAdobe PDF215View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback