政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141552
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51218293      Online Users : 918
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141552


    Title: 新多元變異係數定義與其對應之管制圖
    A New Definition of Multivariate Coefficient of Variation and Its Corresponding Control Charts
    Authors: 潘維辰
    Pan, Wei-Chen
    Contributors: 楊素芬
    葉百堯
    蕭又新

    Yang, Su-Fen
    Yeh, Bai-Yau
    Shiau, Yuo-Hsien

    潘維辰
    Pan, Wei-Chen
    Keywords: 向量化變異係數
    多元指數加權移動平均
    平均連串長度
    多元變異係數
    管制圖
    Average run length
    Control chart
    Multivariate coefficient of variation
    Multivariate exponentially moving average
    Vectorized coefficient of variation
    Date: 2022
    Issue Date: 2022-09-02 14:46:53 (UTC+8)
    Abstract: 傳統上,我們經常使用舒華特管制圖監控製程的平均數及變異數,即使在此之後有許多效果卓越的改良,但我們通常是將平均數即變異數分開監控,因此在某些臨床醫學或工業領域中,當我們希望監控的是製程變異係數(CV)時,傳統的平均數及變異數將不再適用,CV管制圖即是為了解決此問題而被提出。

    多元統計製程控制在近年日趨熱門,多元變異係數(MCV)管制圖也隨之誕生,然而,在現有的發展下,MCV管制圖中對於MCV統計量的定義對於單維度的CV偏移是不敏感的,因此我們嘗試使用向量化變異係數 (vectorized coefficient of variation, VCV)來建立管制圖並監控多元製程變量下的CV以得到更好的改善,我們也同時提出了多元指數加權移動平均(MEWMA)型VCV管制圖,並使用製程失控時的平均連串長度來進行偵測性能的測量,在本研究中已證實MEWMA型VCV管制圖可超越初始的舒華特型VCV管制圖,並且也優於現有在MCV定義下的管制圖。此外,本研究中展示了關於相關係數的偏移在VCV管制圖和MCV管制圖之間行為,最後使用兩不同分配之半導體數據說明VCV管制圖的實務應用。
    In some clinical or industrial applications, it is critically important to monitor the process coefficient of variation (CV). Though there are many existing control charts for monitoring either process mean or variance, the conventional Shewhart X ̅-chart and R-chart (or S-chart) cannot deal with the setting of constant CV. Therefore, the CV control chart is proposed for dealing this problem.

    In recent years, there has been a resurgent interest in developing multivariate statistical process control (MSPC) charts. The multivariate coefficient of variation (MCV) control chart was soon proposed and has been further discussed. However, the existing MCV charts are not sensitive to CV changes which occur at individual variables. In this study, we propose a new definition of multivariate CV, the vectorized CV (VCV), to better capture more subtle changes in CV in individual variables. The multivariate exponential weighted moving average (MEWMA) type VCV control chart is also proposed and has been demonstrated to improve the Shewhart-type VCV chart in this study. The average run length (ARL) is used for the performance measurement. It is shown that the proposed VCV based control charts outperform the existing MCV charts, especially with regards to the MEWMA type VCV chart. Furthermore, the cases when only correlation changes are evaluated and compared between the VCV charts and the MCV charts. A multivariate normal process example and a multivariate non-normal process example are presented to show how the proposed charts can be applied in practice.
    Reference: Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2016). One-sided run rules control charts for monitoring the coefficient of variation in short production runs. European Journal of Industrial Engineering, 10(5), 639-663.
    Calzada, M. E., & Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. Journal of Statistical Computation and Simulation, 83(5), 853-867.
    Castagliola, P., Amdouni, A., Taleb, H., & Celano, G. (2015). One-sided Shewhart-type charts for monitoring the coefficient of variation in short production runs. Quality Technology & Quantitative Management, 12(1), 53-67.
    Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2013). Monitoring the coefficient of variation using a variable sampling interval control chart. Quality and Reliability Engineering International, 29(8), 1135-1149.
    Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2015). Monitoring the coefficient of variation using a variable sample size control chart. The International Journal of Advanced Manufacturing Technology, 80(9), 1561-1576.
    Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the coefficient of variation using EWMA charts. Journal of Quality Technology, 43(3), 249-265.
    Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2013). Monitoring the coefficient of variation using control charts with run rules. Quality Technology & Quantitative Management, 10(1), 75-94.
    Chew, X., Khoo, M. B. C., Khaw, K. W., Yeong, W. C., & Chong, Z. L. (2019). A proposed variable parameter control chart for monitoring the multivariate coefficient of variation. Quality and Reliability Engineering International, 35(7), 2442-2461.
    Chew, X., & Khaw, K. W. (2020). One-sided downward control chart for monitoring the multivariate coefficient of variation with VSSI strategy. Journal of Mathematical Fundamental Sciences, 52(1), 112-130.
    Giner‐Bosch, V., Tran, K. P., Castagliola, P., & Khoo, M. B. C. (2019). An EWMA control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International, 35(6), 1515-1541.

    Haq, A., & Khoo, M. B. (2019). New adaptive EWMA control charts for monitoring univariate and multivariate coefficient of variation. Computers & Industrial Engineering, 131, 28-40.
    Haq, A., Bibi, N., & Chong Khoo, M. B. (2020). Enhanced EWMA charts for monitoring the process coefficient of variation. Quality and Reliability Engineering International, 36(7), 2478-2494.
    Hong, E. P., Kang, C. W., Baek, J. W., & Kang, H. W. (2008). Development of CV control chart using EWMA technique. Journal of the Society of Korea Industrial and Systems Engineering, 31(4), 114-120.
    Iglewicz, B. (1967). Some Properties of the Sample Coefficient of Variation. Unpublished Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
    Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A control chart for the coefficient of variation. Journal of Quality Technology, 39(2), 151-158.
    Khatun, M., Khoo, M. B., Lee, M. H., & Castagliola, P. (2019). One-sided control charts for monitoring the multivariate coefficient of variation in short production runs. Transactions of the Institute of Measurement and Control, 41(6), 1712-1728.
    Khaw, K. W., Khoo, M. B., Yeong, W. C., & Wu, Z. (2017). Monitoring the coefficient of variation using a variable sample size and sampling interval control chart. Communications in Statistics-Simulation and Computation, 46(7), 5772-5794.
    Khaw, K. W., Khoo, M. B., Castagliola, P., & Rahim, M. A. (2018). New adaptive control charts for monitoring the multivariate coefficient of variation. Computers & Industrial Engineering, 126, 595-610.
    Khaw, K. W., Chew, X., Yeong, W. C., & Lim, S. L. (2019). Optimal design of the synthetic control chart for monitoring the multivariate coefficient of variation. Chemometrics and Intelligent Laboratory Systems, 186, 33-40.
    Muhammad, A. N. B., Yeong, W. C., Chong, Z. L., Lim, S. L., & Khoo, M. B. C. (2018). Monitoring the coefficient of variation using a variable sample size EWMA chart. Computers & Industrial Engineering, 126, 378-398.
    Reed, G. F., Lynn, F., & Meade, B. D. (2002). Use of coefficient of variation in assessing variability of quantitative assays. Clinical and Vaccine Immunology, 9(6), 1235-1239.
    Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 42(1), 97-101.
    Teoh, W. L., Khoo, M. B., Castagliola, P., Yeong, W. C., & Teh, S. Y. (2017). Run-sum control charts for monitoring the coefficient of variation. European Journal of Operational Research, 257(1), 144-158.
    Voinov V. G., Nikulin M. S. (1996). Unbiased Estimators and Their Applications. Multivariate Case, Vol. 2. Kluwer: Dordrecht.
    Yeong, W. C., Lee, P. Y., Lim, S. L., Khaw, K. W., & Khoo, M. B. C. (2021). A side‐sensitive synthetic coefficient of variation chart. Quality and Reliability Engineering International, 37(5), 2014-2033.
    Yahaya, M., Lim, S. L., Ibrahim, A. I. N., Yeong, W. C., & Khoo, M. B. C. (2022). A variable sample size synthetic chart for the coefficient of variation. South African Journal of Industrial Engineering, 33(1), 1-15.
    Yeong, W. C., Tan, Y. Y., Lim, S. L., Khaw, K. W., & Khoo, M. B. C. (2022). A variable sample size run sum coefficient of variation chart. Quality and Reliability Engineering International, 38(4), 1869-1885.
    Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2016). A control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International, 32(3), 1213-1225.
    Yeong, W. C., Khoo, M. B., Lim, S. L., & Lee, M. H. (2017). A direct procedure for monitoring the coefficient of variation using a variable sample size scheme. Communications in Statistics-Simulation and Computation, 46(6), 4210-4225.
    You, H. W., Khoo, M. B., Castagliola, P., & Haq, A. (2016). Monitoring the coefficient of variation using the side sensitive group runs chart. Quality and Reliability Engineering International, 32(5), 1913-1927.
    Zhang, J., Li, Z., Chen, B., & Wang, Z. (2014). A new exponentially weighted moving average control chart for monitoring the coefficient of variation. Computers & Industrial Engineering, 78, 205-212.
    Description: 碩士
    國立政治大學
    統計學系
    109354025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109354025
    Data Type: thesis
    DOI: 10.6814/NCCU202201231
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    402501.pdf3506KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback