English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113311/144292 (79%)
造访人次 : 50919872      在线人数 : 768
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141359


    题名: 企業建構新興信用評分模型所面臨之個資保護法規範與因應-以借貸領域之應用為中心
    Personal Data Protection Under Alternative Credit Scoring: A Focus on the Applications of Lending Market
    作者: 王詩函
    Wang, Shih-Han
    贡献者: 鄭菀瓊
    王詩函
    Wang, Shih-Han
    关键词: 新興信用評分模型
    信用評分
    個人資料保護法
    一般資料保護規範
    隱私權
    人工智慧
    大數據
    Alternative credit scoring model
    Credit scoring
    General data protection regulation
    Personal data protection law
    Privacy
    Artificial intelligence
    Big data
    日期: 2022
    上传时间: 2022-08-01 18:52:05 (UTC+8)
    摘要: 信用評分之高低將決定個人取得金融服務之便利程度及成本。在過往,缺少信用紀錄的族群因信用分數較低,難以透過傳統金融機構獲取所需之貸款服務,在需求尚未被滿足及技術發展的推波助瀾下,借貸市場之業者逐漸發展出有別於傳統徵信機構之評分機制,透過更成熟的建模技術與大數據之運用,試圖建立能更準確描繪申貸者輪廓之信用評分模型(又稱為新興信用評分模型),提升其貸款服務觸及之範圍,並藉此發展新型態之商業模式,然而,企業透過新興信用評分模型拓展新商機的同時,亦會因為模型建立的過程中涉及大量資料之蒐集與利用,而需先釐清其中是否有涵蓋個人資料,以避免資料主體隱私權之侵害而需承擔相關法律責任。

    近年來,個人資料被非法外洩或盜用之情事屢見不鮮,因而提升各國對於個人資料保護之意識,紛紛設立或修訂法規以落實更完善之個人資料與隱私保障,而在本文研究之我國、歐盟及美國的個人資料保護規範中,皆可發現其射程範圍不僅止於境內之企業,因此我國企業在建立新興信用評分模型時,恐將同時受多國法規範之拘束。

    本論文將先比較我國、歐盟及美國對於個人資料之定義及判斷,並接續探討企業在建立新興信用評分模型的過程中,其所處理之資料在各國法下是否落入個人資料之範疇,而使其需履行相關義務,最後從個人資料之流程管理面及技術處理面出發,嘗試提供企業相關之法律遵循措施,以降低其在建立新興信用評分模型時所面臨之法律風險。
    The credit rating is an important factor that would influence the cost and possibility when obtaining the financial services. In the past, people who lacked credit histories would have a lower credit score thus fail to apply loans through traditional financial institutions. With the unmet needs of the borrowers and the development of the technology, companies of the lending market tend to develop a new credit scoring mechanism by using more complicated algorithms and big data. By applying the new credit scoring model (so called alternative credit scoring model), companies are able to target their consumers more precisely hence exploit a new market and build different business models. However, the process of building alternative credit scoring models would involve the use of big data. Companies should clarify whether there is any personal data in the model in order to avoid the invasion of the data subject’s privacy.

    In recent years, the leaking and misusing of personal data has raised the awareness of personal data protection in various countries, pushing the authorities to establish or revise personal data protection law. Based on the findings of this paper, personal data protection laws tend to have extraterritorial effect, which means companies may be subject to multiple regulations of different countries at the same time.

    This paper compares the definition of personal data in three countries including R.O.C, EU and the U.S. Then discussed whether the data used in the alternative credit scoring model fall into the category of personal data under the laws of the three countries. And last, this paper will provide some compliance suggestions from the data management perspective and the technical processing aspect, trying to lower the legal risk of the companies when building the alternative credit scoring model.
    參考文獻: 中文文獻
    (一) 期刊論文
    李寧修、林鈺雄、劉定基、蔡烱燉、吳瑛珠、蘇慧婕、劉靜怡(2019),〈新時代個資法的挑戰(下)-從GDPR談起〉,《月旦法學雜誌》,287期。
    宋皇志(2018),〈巨量資料交易之法律風險與管理意涵—以個人資料再識別化為中心〉,《管理評論》,37卷4期。
    范姜真媺(2013),〈個人資料保護法關於「個人資料」保護範圍之檢討〉,《東海大學法學研究》,41期。
    郭戎晉(2020),〈從個人資料保護立法談cookie 之定位、應用爭議與規範課題〉,《東吳法律學報》,32卷1期。
    許宗力(2003),〈基本權利:第六講—基本權的保障與限制(上)〉,《月旦法學教室》,14期。
    張陳弘(2016),〈個人資料之認定-個人資料保護法適用之啟動閥(The Concept of Personal Data - When to Trigger the Taiwan Personal Data Protection Act)〉,《法令月刊》,67卷5期。
    黃耀賞(2015),〈淺談「得以間接方式識別特定個人之資料」〉,《科技法律透析》,27卷1期。
    廖淑君(2020),〈人工智慧應用與個人資料保護之研究-以GDPR自動化個人決策與側寫規定為核心〉,《財金法學研究》,3卷第1期。
    劉靜怡(2002),〈網際網路時代的資訊使用與資訊隱私權保護規範:個人、政府與市場的拔河〉,《資訊管理研究》,4卷3期。
    賴柏(2006),〈消費者個人信用評分之發展現況〉,《金融風險管理》,2卷4期。

    (二) 網路資源
    工研院巨資中心(2016),《資料隱私保護原理與實務》,載於: https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL2NrZmlsZS9lMTRmY2JmOS0yOTNhLTQ1ZjUtOTg2Yy0yZDI3OWVlM2ZhMjQucGRm&n=KDMp6Kqy56iL5ZCN56ixLeizh%2BaWmemaseengeS%2Fneitt%2BWOn%2BeQhuiIh%2BWvpuWLmS5wZGY%3D。
    工商時報(2020),《網銀承諾協助「金融小白」 黃天牧:要守信》,載於:https://ctee.com.tw/news/finance/336353.html。 
    朱培(2020),〈長尾理論在螞蟻金服發展中的應用分析〉,《建投研究》,第79期,載於:http://jic.cn/Uploads/File/2020/09/27/u5f703f38f276d.pdf。
    自由時報(2021),《設立數位發展部 政院官員:個資保護將另設專責機關處理》,載於:https://news.ltn.com.tw/news/politics/breakingnews/3538204。 
    阿里巴巴集團官網(2015),《螞蟻金服推出芝麻信用分 中國首個個人信用服務體系》,載於:https://www.alibabagroup.com/tc/news/article?news=p150128。
    芝麻信用官網(2015),《2015大事記》,載於;https://www.zmxy.com.cn/#/detail/4-1-0。
    芝麻信用官網,《芝麻分》,載於:https://www.zmxy.com.cn/#/detail/1-2。
    英語島雜誌(2020),《市值350億美元IPO案喊卡,螞蟻金服做錯什麼?》,載於:https://www.eisland.com.tw/Main.php?stat=a_ZKhD1rD&mid=46。
    香港財經時報(2020),《解構螞蟻上市觸礁 關鍵不在馬雲!靠花唄借唄半年賺百億惹爭議 一文看清原因與影響》,載於: https://www.businesstimes.com.hk/articles/130562/%E8%9E%9E%E8%9F%BB%E4%B8%8A%E5%B8%82%E6%94%AF%E4%BB%98%E5%AF%B6%E9%98%BF%E9%87%8C%E5%B7%B4%E5%B7%B4-%E8%8A%B1%E5%94%84-%E5%80%9F%E5%94%84-%E9%A6%AC%E9%9B%B2/。
    財團法人金融聯合徵信中心網站(2021),《個人信用評分組成》,載於:https://www.jcic.org.tw/main_ch/docDetail.aspx?uid=1555&pid=1555&docid=629。
    財團法人國家政策研究基金會網站(2019),《普惠金融KPI應接軌國際》,載於:https://www.npf.org.tw/1/22053。
    國家發展委員會個資保護專區(2013),《個人資料保護法問答》,載於:https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzMwL3JlbGZpbGUvNjkyNS8zMDQxMy8wODY2ZGU2Yy1kOTk1LTQ0MGEtYWYyYS05OWM1NDI3MGU4N2YucGRm&n=44CM5YCL5Lq66LOH5paZ5L%2bd6K235rOV5Z%2b656SO5ZWP562U44CNLnBkZg%3d%3d&icon=..pdf。
    經濟部法規委員會(2020),《經濟部個人資料保護作業手冊109年4月版》,載於:https://www.moea.gov.tw/MNS/colr/content/SubMenu.aspx?menu_id=7783。
    睿富者(2017),《大有學問的P2P 經濟學》,載於:https://www.stockfeel.com.tw/%E5%A4%A7%E6%9C%89%E5%AD%B8%E5%95%8F%E7%9A%84-p2p-%E7%B6%93%E6%BF%9F%E5%AD%B8/。
    蕭富峰(2017),〈顛覆市場營運模式〉,《震旦月刊》,第548期,載於:https://www.aurora.com.tw/aurora-monthly/548/0h068695482135785307。

    外文文獻
    (一) 專書
    CORMEN THOMAS H., LEISERSON CHARLES E., RIVEST RONALD L., STEIN CLIFFORD, INTRODUCTION TO ALGORITHMS (3D EDITION) (MIT PRESS 2009).
    MURPHY KEVIN P., MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE (MIT Press 2012).
    (二) 期刊論文
    Aggarwal Nikita, The norms of algorithmic credit scoring, CAMBRIDGE L.J., Volume 80, Issue 1, 42-73 (2021).
    Bowers Jasmine, Sherman Imani N., Butler Kevin R. B., Traynor Patrick, Characterizing Security and Privacy Practices in Emerging Digital Credit Applications, Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, 94-107 (2019).
    Boyne Shawn Marie, Data Protection in the United States, AM. J. COMP. L., Volume 66, 299-343 (2018).
    Bruckner Matthew Adam, The Promise and Perils of Algorithmic Lenders` Use of Big Data, CHI.-KENT L. REV., Volume 93, 3-60 (2018).
    Chieng Allen, Choong Hoon, Lee Nung Kion, Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences using Ordinal versus one-hot Encoding Method, 2017 International Conference on Computer and Drone Applications (IConDA). IEEE, 60-65 (2017).
    Croux Christophe, Jagtiani Julapa, Korivi Tarunsai, Vulanovic Milos, Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform, JOURNAL OF ECONOMIC BEHAFVIOR & ORGANIZATION, Volume 173, 270-296 (2020).
    Field Elizabeth L., United States Data Privacy Law: The Domino Effect After the GDPR, NC BANKING INST., Volume 24, Issue 1, 481-498 (2020).
    Finck Michèle, Frank Pallas, They Who Must Not Be Identified - Distinguishing Personal from Non-Personal Data Under the GDPR, INTERNATIONAL DATA PRIVACY LAW, Volume 10, no. 1, 11-36 (2020).
    Goldman Eric, An Introduction to California’s Consumer Privacy Laws (CCPA and CPRA), 1-9 (2021).
    García Salvador, Gallego Sergio Ramírez, Luengo Julián, Benítez José Manuel and Herrera Francisco, Big data preprocessing: methods and prospects, BIG DATA ANALYTICS 1, Article 9, 1-22 (2016).
    Hunter John C., “All Data is Credit Data,” or, On Close Reading as a Reciprocal Process in Digital Knowledge Environments, SCHOLARLY AND RESEARCH COMMUNICATION, Volume 5, Issue 2, 1-10 (2014).
    Hurley Mikella, Julius Adebayo, Credit Scoring in the Era of Big Data, YALE J.L & TECH., Volume 18, 148- 216 (2016).
    Jackson Eric, Agrawal Rajeev, Performance Evaluation of Different Feature Encoding Schemes on Cybersecurity Logs, 2019 SOUTHEAST CONFERENCE. IEEE, 1-9 (2019).
    Jagtiani Julapa, Lemieux Catharine, Roles of Alternative Data and Machine Learning in Fintech Lending: Evidence From the LendingClub Consumer Platform, FINANCIAL MANAGEMENT, Volume 48, Issue 4, 1009-1029 (2019).
    Kuner Christopher, Fred H. Cate, Millard Christopher, Svantesson Dan Jerker B., Lynskey Orla, Risk management in data protection, INTERNATIONAL DATA PRIVACY LAW, Volume 5, Issue 2, 95-98 (2015).
    Linebaugh Chris D., Mulligan Stephen P., Data Protection Law: An Overview, Congressional Research Service, 1-75 (2019).
    Levin Orit, Salido Javier, The Two Dimensions of Data Privacy Measures, 1-9 (2016).
    Schwartz Paul M., Solove Daniel J., Reconciling Personal Information in the United States and European Union, CAL. L. REV., Volume 102, 877-916 (2014).
    Mehrabi Ninareh, Morstatter Fred, Saxena Nripsuta, Lerman Kristina, Galstyan Aram, A Survey on Bias and Fairness in Machine Learning, ACM COMPUTING SURVEYS (CSUR), Volume 54, Issue 6, Article 115, 1-35 (2021).
    Montjoye Yves-Alexandre de, Hidalgo César A., Verleysen Michel, Blondel Vincent D., Unique in the crowd: The privacy bounds of human mobility, 3 SCIENTIFIC REPORTS, Article 1376, 1-5 (2013).
    Nadezhda Purtova, The Law of Everything. Broad Concept of Personal Data and Future of EU Data Protection Law, LAW, INNOVATION AND TECHNOLOGY, Volume 10, no. 1, 40-81 (2018).
    Payne David, New York Shows Two Sides of the Same SHIELD Act, THE BUSINESS LAWYER, Volume 76, Issue 1, 283-287 (2020).
    Peasley Mark, It`s Time for an American (Data Protection) Revolution, AKRON L. REV., Volume 52, Issue 3, 911-944 (2018).
    Smith H. Jeff, Dinev Tamara, Xu Heng, Information Privacy Research: An Interdisciplinary Review, MIS QUARTERLY, Volume 35, Issue 4, 989-1015 (2011).
    Schmidt Jonathan, Marques Mário R. G., Botti Silvana, Marques Miguel A. L., Recent advances and applications of machine learning in solid-state materials science, NPJ COMPUTATIONAL MATERIALS, Volume 5, Issue 1, 1-36 (2019).
    Sweeney Latanya, Simple Demographics Often Identify People Uniquely, HEALTH (SAN FRANCISCO), Volume 671, 1-34 (2000).
    Segal Miriam, What Is Alternative Finance?, OFF. ADVOCACY, Volume 1, 1-4 (2016).
    Serrano Cinca C., Gutiérrez Nieto B., López Palacios L., Determinants of Default in P2P Lending, PLOS ONE, Volume 10, Issue 10, 1- 22 (2015).
    Sicari Sabrina, Rizzardi Alessandra, Miorandi Daniele, Coen-Porisin Alberto, Security towards the edge: Sticky policy enforcement for networked smart objects, INFORMATION SYSTEMS, Volume 71, 78-89 (2017).
    Tripathi Diwakar, Damodar Reddy Edla, Cheruku Ramalingaswamy, Kuppili Venkatanareshbabu, A novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classification, COMPUTATIONAL INTELLIGENCE, Volume 35, Issue 2, 371-394 (2019).
    Tavani Herman T., Informational privacy, data mining, and the Internet, ETHICS AND INFORMATION TECHNOLOGY, Volume 1, Issue 2, 137-145 (1999).
    Talesh Shauhin A., Data Breach, Privacy, and Cyber Insurance: How Insurance Companies Act as“Compliance Managers” for Businesses, LAW & SOCIAL INQUIRY, Volume 43, Issue 2, 417-440 (2018).
    Tounsi Youssef, Anoun Houda, Hassouni Larbi, CSMAS: Improving Multi-Agent Credit Scoring System by Integrating Big Data and the new generation of Gradient Boosting Algorithms, Proceedings of the 3rd International Conference on Networking, Information Systems & Security, 1-7 (2020).
    Warren Samuel D., Brandeis Louis D., The Right to privacy, HARV. L. REV. 4, no. 5 (1890).
    Wojciech Samek , Wiegand Thomas, and Müller Klaus-Robert, Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models, arXiv preprint arXiv:1708.08296, 1-8 (2017).
    (三) 學位論文
    Seger Cedric, An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing, KTH Royal Institute of Technology (2018).

    (四) 網路資源
    Agrawal Vikas, How Alternative Lenders are Using Big Data and AI to Revolutionise Lending, DATAFLOQ (Dec. 20, 2017), https://datafloq.com/read/alternative-lenders-using-big-data-ai-lending/4137 .
    Ann Carrns, SoFi Tapping Alumni to Help With Student Loans, The New York Times (Apr. 3, 2012), https://bucks.blogs.nytimes.com/2012/04/03/sofi-tapping-alumni-to-help-with-student-loans/.
    Australian Competition and Consumer Commission (ACCC), Digital Platforms Inquiry Final Report (2019), https://www.accc.gov.au/system/files/Digital%20platforms%20inquiry%20-%20final%20report.pdf.
    Anna Johnston, Government sets direction for privacy law reform in Australia, iapp (Nov. 4, 2021), https://iapp.org/news/a/government-sets-direction-for-privacy-law-reform-in-australia/.
    Alan Charles Raul, Snezhana Stadnik Tapia, In a nutshell: data protection, privacy and cybersecurity in USA, Sidley Austin LLP Resources (Nov. 5, 2021), https://www.lexology.com/library/detail.aspx?g=1df08bf2-622a-4674-ac31-51930f6a80f8.
    Alyssa Newcomb, Chicago Tribune, Los Angeles Times block European users due to GDPR, NBC News (May. 26, 2018), https://www.nbcnews.com/tech/tech-news/chicago-tribune-los-angeles-times-block-european-users-due-gdpr-n877591.
    Bruce Upbin, ZAML Fair - Our New AI To Reduce Bias In Lending, ZESTAI (Mar. 19, 2019), https://www.zest.ai/insights/zaml-fair-our-new-ai-to-reduce-bias-in-lending.
    Bloomberg Law, CCPA vs CPRA: What’s the Difference?, Bloomberg Law (Jul. 13, 2021), https://pro.bloomberglaw.com/brief/the-far-reaching-implications-of-the-california-consumer-privacy-act-ccpa/.
    Cambridge Center for Alternative Finance, The Global Alternative Finance Market Benchmarking Report (2020), https://www.jbs.cam.ac.uk/wp-content/uploads/2020/08/2020-04-22-ccaf-global-alternative-finance-market-benchmarking-report.pdf.
    Cambridge Center for Alternative Finance, The 2nd Global Alternative Finance Market Benchmarking Report, 5, 25 (2021), https://www.jbs.cam.ac.uk/wp-content/uploads/2021/06/ccaf-2021-06-report-2nd-global-alternative-finance-benchmarking-study-report.pdf.
    Congressional Research Service (CRS), Alternative Data in Financial Services (2020), https://www.everycrsreport.com/files/2020-08-27_IF11630_24410ca2dbaaaa7fb2d1c09c8e13f1ee02a0eb59.pdf.
    Consumer Financial Protection Bureau (CFPB), CFPB Study Shows Financial Product Could Help Consumers Build Credit, CFPB Newsroom (Jul. 13, 2020), https://www.consumerfinance.gov/about-us/newsroom/cfpb-study-shows-financial-product-could-help-consumers-build-credit/.
    Committee on the Global Financial System (CGFS) & Financial Stability Board (FSB), FinTech credit: Market structure, business models and financial stability implications (2017), https://www.fsb.org/wp-content/uploads/CGFS-FSB-Report-on-FinTech-Credit.pdf.
    Consumer Financial Protection Bureau (CFPB), Request for Information Regarding Use of Alternative Data and Modeling Techniques in the Credit Process, Federal Register (Feb. 21, 2017), https://www.federalregister.gov/documents/2017/02/21/2017-03361/request-for-information-regarding-use-of-alternative-data-and-modeling-techniques-in-the-credit.
    Cat Zakrzewski, Virginia governor signs nation’s second state consumer privacy bill, The Washington Post (Mar. 2, 2020), https://www.washingtonpost.com/technology/2021/03/02/privacy-tech-data-virgina/.
    Development Asia, Here`s How Alternative Credit Scoring Can Improve the Poor`s Access to Loans, Development Asia Explainer (Apr.24, 2020), https://development.asia/explainer/heres-how-alternative-credit-scoring-can-improve-poors-access-loans.
    Data Protection Commission, Guidance on Anonymisation and Pseudonymisation (2019), https://www.dataprotection.ie/sites/default/files/uploads/2020-09/190614%20Anonymisation%20and%20Pseudonymisation.pdf.
    Daniel K. Alvarez, Richard M. Borden, Nicholas C. Chanin, Virginia is the New Privacy Leader: What’s Next After Virginia Passes Comprehensive Privacy Law, Willkie Farr & Gallagher LLP (2021), https://www.willkie.com/-/media/files/publications/2021/03/virginiaisthenewprivacyleader.pdf.
    David Stauss, Virginia Consumer Data Protection Act Work Group Issues 2021 Final Report, Byte Back (Nov. 1, 2021), https://www.bytebacklaw.com/2021/11/virginia-consumer-data-protection-act-work-group-issues-2021-final-report/.
    David E. Sanger, Russian Hackers Broke Into Federal Agencies, U.S. Officials Suspect, The New York times (Dec. 13, 2020), https://www.nytimes.com/2020/12/13/us/politics/russian-hackers-us-government-treasury-commerce.html.
    Daniel Solove, Breach Notification Laws Now in All 50 States, TeachPrivacy (Apr. 7, 2018), https://teachprivacy.com/breach-notification-laws-now-in-all-50-states/.
    European Commission, Data protection: European Commission launches the process towards adoption of the adequacy decision for the Republic of Korea, European Commission Press release (Jun. 16, 2021), https://ec.europa.eu/commission/presscorner/detail/en/ip_21_2964.
    European Commission, Data protection: Commission adopts adequacy decisions for the UK, European Commission Press release (Jun. 28, 2021), https://ec.europa.eu/commission/presscorner/detail/ro/ip_21_3183.
    European Commission, Regulatory framework proposal on artificial intelligence, European Commission policies, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.
    European Data Protection Board (EDPB), EDPB & EDPS call for ban on use of AI for automated recognition of human features in publicly accessible spaces, and some other uses of AI that can lead to unfair discrimination, EDPB News (Jun. 21, 2021), https://edpb.europa.eu/news/news/2021/edpb-edps-call-ban-use-ai-automated-recognition-human-features-publicly-accessible_en.
    FinScore, Why Alternative Data Sources are Becoming More Popular, FinScore Blog (Oct. 19, 2020), https://www.finscore.ph/why-alternative-credit-data-sources-are-becoming-more-popular/.
    Federal Trade Commissio (FTC), FTC Strengthens Security Safeguards for Consumer Financial Information Following Widespread Data Breaches, FTC Press release (Oct. 27, 2021), https://www.ftc.gov/news-events/press-releases/2021/10/ftc-strengthens-security-safeguards-consumer-financial.
    Federal Trade Commission, How to Comply with the Privacy of Consumer Financial Information Rule of the Gramm-Leach-Bliley Act, Federal Trade Commission Business Center, https://www.ftc.gov/tips-advice/business-center/guidance/how-comply-privacy-consumer-financial-information-rule-gramm.
    Hong Kong Monetary Authority, Alternative Credit Scoring of Micro-,Small and Medium-sized Enterprises (2020), https://www.hkma.gov.hk/media/eng/doc/key-functions/financial-infrastructure/alternative_credit_scoring.pdf .
    Information Commissioner’s Office (ICO), https://ico.org.uk/about-the-ico/who-we-are/.
    Information Commissioner’s Office (ICO), Anonymisation: Managing Data Protection Risk Code of Practice (2012), https://ico.org.uk/media/1061/anonymisation-code.pdf.
    Information Commissioner’s Office (ICO), Big data, artificial intelligence, machine learning and data protection version 2.2 (2017), available at: https://ico.org.uk/media/for-organisations/documents/2013559/big-data-ai-ml-and-data-protection.pdf.
    Information Commissioner’s Office (ICO), What methods can we use to provide privacy information?, ICO for organisations, https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/the-right-to-be-informed/what-methods-can-we-use-to-provide-privacy-information/.
    ISO, ISO/IEC 20889:2018 (Privacy enhancing data de-identification terminology and classification of techniques) (2018), available at: https://www.iso.org/standard/69373.html.
    ICLG, USA: Data Protection Laws and Regulations 2021, ICLG (Jun. 7, 2021), available at: https://iclg.com/practice-areas/data-protection-laws-and-regulations/usa.
    Inderpal Bhandari, Daniel Hernandez, Leading with trust will differentiate companies, IBM Blog (Sep. 7, 2021), https://www.ibm.com/blogs/journey-to-ai/2021/09/leading-with-trust-will-differentiate-companies.
    Identity Theft Resource Center, Accellion Data Breach Involving Sensitive Information Impacts Multiple Entities, Identity Theft Resource Center (Mar. 17, 2021), https://www.idtheftcenter.org/post/accellion-data-breach-involving-sensitive-information-impacts-multiple-entities/.
    IFSEC Global, Two years on from GDPR: Has it driven growth in cyber security insurance?, IFSEC Global (Jul. 7, 2020), https://www.ifsecglobal.com/cyber-security/two-years-on-from-gdpr-has-it-driven-growth-in-cyber-security-insurance/.
    Jason Brownlee, Parametric and Nonparametric Machine Learning Algorithms, Machine Learning Mastery (Mar. 14, 2016), https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/.
    Jake VanderPlas, In-Depth: Decision Trees and Random Forests, Python Data Science Handbook (O`Reilly Media, Inc. 2016), https://jakevdp.github.io/PythonDataScienceHandbook/05.08-random-forests.html.
    Jason C. Gavejian, Joseph J. Lazzarotti, Maya Atrakchi, Virginia Passes Consumer Privacy Law; Other States May Follow, National Law Review (Feb. 17, 2021), https://www.natlawreview.com/article/virginia-passes-consumer-privacy-law-other-states-may-follow.
    Jonathan Gallo, Virginia`s New Data Privacy Law, JD SUPRA (May. 13, 2021), https://www.jdsupra.com/legalnews/virginia-s-new-data-privacy-law-5483451/.
    Jason Oliveri, Privacy Bill Essentials: Proposed Federal Consumer Data Privacy and Security Act, JD SUPRA (May. 5, 2021), https://www.jdsupra.com/legalnews/privacy-bill-essentials-proposed-4498218/.
    Joshua Mooney, Richard Borden, New York’s Shield Act Cheat Sheet, White and Williams LLP (Dec. 12, 2019), https://www.whiteandwilliams.com/resources-alerts-New-York-SHIELD-Act-Cheat-Sheet.
    Kendra Clark, The current state of US state data privacy laws, The Drum (Apr. 26, 2021), https://www.thedrum.com/news/2021/04/26/the-current-state-us-state-data-privacy-laws.
    Laura Burrows, 2020 State of Alternative Credit Data (2020), Experian Insights (Sep 17, 2020), https://www.experian.com/blogs/insights/2020/09/2020-state-alternative-credit-data/.
    LendingClub, LendingClub Closes Acquisition of Radius Bancorp, LendingClub Press Release (Feb. 1, 2021), https://ir.lendingclub.com/news/news-details/2021/LendingClub-Closes-Acquisition-of-Radius-Bancorp/default.aspx.
    LendingClub, Important Updates to the LendingClub Notes Platform, LendingClub Investor Updates (Oct. 15, 2021), https://help.lendingclub.com/hc/en-us/articles/360050574891-Important-Updates-to-the-LendingClub-Notes-Platform .
    LendingClub, LendingClub Corporation Annual Report (2019), https://www.annualreports.com/HostedData/AnnualReportArchive/l/NYSE_LC_2019.pdf.
    Maury Denton, The Sofi Advantage: Harnessing The Power Of Networking, SoFi Blog (Jul. 2, 2013), https://www.sofi.com/blog/the-sofi-advantage-harnessing-the-power-of-networking/.
    Michelle Black, Caroline Lupini, President Biden’s Plan To Change Credit Reporting And Scoring, Forbes ADVISOR (Feb. 22, 2021), https://www.forbes.com/advisor/credit-cards/president-bidens-plan-to-change-credit-reporting-and-scoring/.
    Microsoft AI principles, https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6.
    myFICO, What`s In My FICO® Scores?, https://www.myfico.com/credit-education/whats-in-your-credit-score.
    NY Attorney General, Attorney General James` Statement On Shield Act, NY Attorney General Press release (Jul. 25, 2019), https://ag.ny.gov/press-release/2019/attorney-general-james-statement-shield-act.
    NY Attorney General, Attorney General James Gets Dunkin’ to Fill Holes in Security, Reimburse Hacked Customers, NY Attorney General Press release (Sep. 15, 2020), https://ag.ny.gov/press-release/2020/attorney-general-james-gets-dunkin-fill-holes-security-reimburse-hacked-customers
    No. US 2015/0019405 A1 patent (Pub. Date: Jan. 15, 2015), available at: https://patentimages.storage.googleapis.com/a8/c8/5e/23ab3a0c6c99ed/US20150019405A1.pdf.
    Peter Cohan, SoFi`s New Take on $1 Trillion Student Loan Market, Forbes (Apr. 2, 2012), https://www.forbes.com/sites/petercohan/2012/04/02/sofis-new-take-on-1-trillion-student-loan-market/?sh=8a3040879f4a.
    Privacy Rights Clearinghouse, Fair Credit Reporting Act Basics, Privacy Rights Clearinghouse Resources (Jul. 12, 2019), https://privacyrights.org/resources/fair-credit-reporting-act-basics.
    Rob Berger, A Rare Glimpse Inside the FICO Credit Score Formula, DoughRoller (Aug. 20, 2020), https://www.doughroller.net/credit/a-rare-glimpse-inside-the-fico-credit-score-formula/.
    Rohit Dwivedi, How Does Linear And Logistic Regression Work In Machine Learning?, Analytics Steps (Apr. 27, 2020), https://www.analyticssteps.com/blogs/how-does-linear-and-logistic-regression-work-machine-learning.
    Robinhood, Robinhood Announces Data Security Incident, Robinhood blog (Nov. 16, 2021), https://blog.robinhood.com/news/2021/11/8/data-security-incident.
    Ropek Lucas, What Does A Biden Presidency Mean for Privacy Policy?, Governing (Jan. 15, 2021), https://www.governing.com/security/what-does-a-biden-presidency-mean-for-privacy-policy.html.
    Ruby Hinchliffe, LendingClub Shuts Retail P2P Offering as It focuses on Institutional Investors, Fintech Future (Oct. 9, 2020), https://www.fintechfutures.com/2020/10/lendingclub-shuts-retail-p2p-offering-as-it-focuses-on-institutional-investors/.
    Sitel Group, Why LendingClub Is About to Take FinTech Lending Into the Mainstream, Sitel Group Insight (Mar.10, 2020), https://www.sitel.com/blog/taking-fintech-lending-into-the-mainstream/.
    SoFi, How It Works: Credit Scores And Our Lending Decisions, SoFi Blog (Feb. 16, 2018), https://reurl.cc/OXrKQg.
    Shannon Bond, MBA lender seeks to securitise student debt, Finical Times (Mar. 27, 2013), https://www.ft.com/content/52c915e0-9628-11e2-b8dd-00144feabdc0.
    SoFi, How It Works: How SoFi Makes Money, SoFi Blog (May. 9, 2018), https://reurl.cc/pmveq8.
    Stefani Wendel, Across the Universe of Alternative Credit Data, Experian Insight (May. 22, 2019), https://www.experian.com/blogs/insights/2019/05/state-of-alternative-credit-data/.
    Sarah McBride, Micro-lender Zestcash latest to win VC backing, REUTERS (Jul. 21, 2011), https://www.reuters.com/article/zestcash-idUSN1E76J26S20110721
    The European Union Agency for Cybersecurity (ENISA), Pseudonymisation techniques and best practices (2019), available at: https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices.
    Usercentrics, 10 point checklist: GDPR compliance for startups, Usercentrics Blog (Sep. 6, 2021), https://usercentrics.com/knowledge-hub/gdpr-compliance-for-startups/.
    Virginia Consumer Data Protection Act Work Group, Virginia Consumer Data Protection Act Work Group 2021 Final Report (2021) https://rga.lis.virginia.gov/Published/2021/RD595/PDF.
    ZestFinance, Introducing ZAML (Zest Automated Machine Learning), https://perma.cc/3V5U-TGT9.
    ZESTAI, https://www.zest.ai/.
    Zack Whittaker, Robinhood says millions of customer names and email addresses taken in data breach, Tech Crunch (Nov. 9, 2021), https://techcrunch.com/2021/11/09/robinhood-data-breach/.
    描述: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    108364213
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108364213
    数据类型: thesis
    DOI: 10.6814/NCCU202200861
    显示于类别:[科技管理與智慧財產研究所] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    421301.pdf6611KbAdobe PDF2166检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈