Reference: | 一、中文參考文獻 謝嘉聲,(2006).。以雷達干涉技術偵測地表變形研究,國立交通大學土木工程學系博士學位論文:新竹 盧玉芳,(2006).。以雷達干涉技術監測雲林地層下陷,國立交通大學土木工程學系碩士學位論文:新竹 二、外文參考文獻 Anantrasirichai, N., Biggs, J., Albino, F., & Bull, D. (2019a). The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series. Geophysical Research Letters, 46(21), 11850-11858. Anantrasirichai, N., Biggs, J., Albino, F., & Bull, D. (2019b). A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sensing of Environment, 230, 111179. Anantrasirichai, N., Biggs, J., Albino, F., Hill, P., & Bull, D. (2018). Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. Journal of Geophysical Research: Solid Earth, 123(8), 6592-6606. Anantrasirichai, N., Biggs, J., Kelevitz, K., Sadeghi, Z., Wright, T., Thompson, J., Achim, A. M., & Bull, D. (2020). Detecting Ground Deformation in the Built Environment using Sparse Satellite InSAR data with a Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 59(4), 2940-2950. Askne, J. I., Dammert, P. B., Ulander, L. M., & Smith, G. (1997). C-band repeat-pass interferometric SAR observations of the forest. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 25-35. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence(6), 679-698. Chang, Y.-L., Anagaw, A., Chang, L., Wang, Y. C., Hsiao, C.-Y., & Lee, W.-H. (2019). Ship detection based on YOLOv2 for SAR imagery. Remote Sensing, 11(7), 786. Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks, 10(5), 1055-1064. Chen, C. W., & Zebker, H. A. (2000). Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. JOSA A, 17(3), 401-414. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., & Xu, J. (2019). MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155. Doerry, A. W. (2016). Representing SAR complex image pixels. Radar Sensor Technology XX, Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1), 35-50. Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11-15. Fattahi, H., Simons, M., & Agram, P. (2017). InSAR time-series estimation of the ionospheric phase delay: An extension of the split range-spectrum technique. IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5984-5996. Fernández, J., Pepe, A., Poland, M. P., & Sigmundsson, F. (2017). Volcano Geodesy: Recent developments and future challenges. Journal of Volcanology and Geothermal Research, 344, 1-12. Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460-3470. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. Gens, R., & VAN GENDEREN, J. L. (1996). Review Article SAR interferometry—issues, techniques, applications. International Journal of Remote Sensing, 17(10), 1803-1835. Ghoury, S., Sungur, C., & Durdu, A. (2019). Real-time diseases detection of grape and grape leaves using faster r-cnn and ssd mobilenet architectures. International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES 2019), Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision, Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035-4038. Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. European conference on information retrieval, Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2). Springer Science & Business Media. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics(6), 610-621. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904-1916. Hosang, J., Benenson, R., Dollár, P., & Schiele, B. (2015). What makes for effective detection proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4), 814-830. Hough, P. V. (1962). Method and means for recognizing complex patterns. In: Google Patents. Jianjun, Z., Zhiwei, L., & Jun, H. (2017). Research progress and methods of InSAR for deformation monitoring. Acta Geodaetica et Cartographica Sinica, 46(10), 1717. Kang, M., Leng, X., Lin, Z., & Ji, K. (2017). A modified faster R-CNN based on CFAR algorithm for SAR ship detection. 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Keen, N. (2005). Color moments. School of informatics, University of Edinburgh, 3-6. Keysers, D., Deselaers, T., Gollan, C., & Ney, H. (2007). Deformation models for image recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1422-1435. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541-551. Li, Z.-W., Ding, X.-L., Zheng, D.-W., & Huang, C. (2008). Least squares-based filter for remote sensingimage noise reduction. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2044-2049. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision, Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. European conference on computer vision, Monti-Guarnieri, A., Parizzi, F., Pasquali, P., Prati, C., & Rocca, F. (1993). SAR interferometry experiments with ERS-1. Proceedings of IGARSS`93-IEEE International Geoscience and Remote Sensing Symposium, Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971-987. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra r-cnn: Towards balanced learning for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Pass, G., Zabih, R., & Miller, J. (1997). Comparing images using color coherence vectors. Proceedings of the fourth ACM international conference on Multimedia, Pathier, E., Fruneau, B., Deffontaines, B. t., Angelier, J., Chang, C.-P., Yu, S.-B., & Lee, C.-T. (2003). Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212(1-2), 73-88. Perissin, D., Wang, Z., & Wang, T. (2011). The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. Proceedings of the ISRSE, Sidney, Australia, 1015. Porzycka-Strzelczyk, S., Rotter, P., & Strzelczyk, J. (2018). Automatic detection of subsidence troughs in SAR interferograms based on circular Gabor filters. IEEE Geoscience and Remote Sensing Letters, 15(6), 873-876. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 91-99. Rotter, P., & Muron, W. (2020). Automatic Detection of Subsidence Troughs in SAR Interferograms Based on Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 18(1), 82-86. Shrivastava, A., Gupta, A., & Girshick, R. (2016). Training region-based object detectors with online hard example mining. Proceedings of the IEEE conference on computer vision and pattern recognition, Tomás, R., Pagán, J. I., Navarro, J. A., Cano, M., Pastor, J. L., Riquelme, A., Cuevas-González, M., Crosetto, M., Barra, A., & Monserrat, O. (2019). Semi-automatic identification and pre-screening of geological–geotechnical deformational processes using persistent scatterer interferometry datasets. Remote Sensing, 11(14), 1675. Uijlings, J., Van De Sande, K., Gevers, T., & Smeulders, A. (2013). Selective search for object recognition. International Journal of Computer Vision, 104, 154-171. Wang, Y., Wang, C., & Zhang, H. (2018). Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images. Remote sensing letters, 9(8), 780-788. Wright, T., Gonzalez, P., Walters, R., Hatton, E., Spaans, K., & Hooper, A. (2016). LiCSAR: Tools for automated generation of Sentinel-1 frame interferograms. AGU Fall Meeting Abstracts, Xu, B., Li, Z.-w., Wang, Q.-j., Jiang, M., Zhu, J.-j., & Ding, X.-l. (2013). A refined strategy for removing composite errors of SAR interferogram. IEEE Geoscience and Remote Sensing Letters, 11(1), 143-147. Yan, Y., Chen, M., Shyu, M.-L., & Chen, S.-C. (2015). Deep learning for imbalanced multimedia data classification. 2015 IEEE international symposium on multimedia (ISM), Yu, C., Li, Z., Penna, N., & Crippa, P. (2018). Generic Atmospheric Correction Online Service for InSAR (GACOS). EGU General Assembly Conference Abstracts, Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950-959. |