Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/141228
|
Title: | COVID-19疫情對民眾進行旅運及公共空間使用及認知之影響分析 Analysis of the Impact of the COVID-19 Epidemic on People`s Travel and Public Space Use and Perception |
Authors: | 林怡昕 Lin, Yi-Sin |
Contributors: | 白仁德 Pai, Jen-Te 林怡昕 Lin, Yi-Sin |
Keywords: | COVID-19 大眾運輸 公共空間 多元迴歸分析 結構方程模型 COVID-19 Public transportation Public space Multiple regression analysis Structural equation modeling |
Date: | 2022 |
Issue Date: | 2022-08-01 18:23:04 (UTC+8) |
Abstract: | COVID-19於全球爆發大規模感染,除了造成人類大量感染死亡,也重創人類習以為常的都市生活。各國政府及研究機構雖研發出疫苗及藥品等醫藥措施,然而COVID-19仍會在已接種疫苗及已康復之患者身上重複感染。在疫情肆虐兩年的現今,人類已著手與病毒長期抗戰。 本研究以曾造成影響之疾病的文獻探討影響因素,再根據各國於COVID-19所歸納的都市生活變化和影響因素設計問卷。以2020年4至6月及2021年5至7月作為時間標的,臺灣居民為對象,紀錄疫情嚴重時期認知感受與都市空間、運輸工具之使用頻率。首先以敘述統計分析受試者認知及頻率之數據,再以多元迴歸分析探討變數間的關係,最後以偏最小平方法結構方程模型,建立交通運輸及公共空間使用認知模型。 研究結果顯示,大眾運輸運具及室內公共空間的使用頻率於疫情嚴重期間顯著下降,並且風險認知為主要因素,該發現與文獻歸納因素相呼應,而不同疾病下有相同現象。此外,在不同嚴重程度的時間段,影響都市空間及交通運輸使用頻率的因素亦不同。如影響工作場所的頻率及休閒場所的頻率之因素,在疫情肆虐時期,由風險認知轉為收入和都市環境特徵。 藉由分析疫情下都市空間和大眾運輸使用和心理感受,可了解傳染病期間民眾所重視及抱有疑慮的都市特徵。在與病毒共存的時代,都市規劃者可應用相關經驗,以降低都市風險和消除疑慮的方向,設計後疫情下的都市環境。 The outbreak of large-scale infection of COVID-19 around the world has not only caused a large number of human infections and deaths, but also severely damaged the urban life that humans are accustomed to. Although governments and research institutions around the world have developed vaccines, pharmaceuticals and other medical measures, COVID-19 will still re-infect vaccinated and recovered patients. Now that the epidemic has been raging for two years, mankind has embarked on a long-term battle against the virus. This study explores the influencing factors based on the literature of the diseases that have caused the impact, and then designs a questionnaire based on the changes and influencing factors of urban life summarized by various countries in the context of COVID-19. Taking April-June 2020 and May-July 2021 as the target time periods, residents in Taiwan are sampled to survey the cognitive experience and the usage of urban public space and means of transportation during the severe epidemic period. Firstly, the descriptive statistics of subjects` cognition and frequency were analyzed, and then the casual relation between variables was explored by multiple regression analysis. Finally, the cognitive model of public transportation and space usage were established by using partial least squares structural equation model. The results of the study showed that the frequency of use of public transportation and indoor public spaces decreased significantly during the severe epidemic period, and risk perception was the main factor. In addition, the factors affecting the frequency of urban space and transportation use are also different in time periods of different severity. For example, factors affecting the frequency of workplaces and leisure venues have shifted from risk perception to income and urban environment characteristics during the raging epidemic. By analyzing the usage cognition and perception of urban space and public transportation during the epidemic, the critical urban characteristics which were valued and worried by residents during the epidemic can be understood. In the era of coexistence with the virus, urban planners can apply relevant experience to reduce urban risks and eliminate doubts in the direction of designing urban environments under the epidemic. |
Reference: | Abdullah, M., Ali, N., Hussain, S. A., Aslam, A. B., & Javid, M. A. (2021). Measuring changes in travel behavior pattern due to COVID-19 in a developing country: A case study of Pakistan. Transport Policy, 108(May), 21–33. https://doi.org/10.1016/j.tranpol.2021.04.023 Awad-Núñez, S., Julio, R., Moya-Gómez, B., Gomez, J., & Sastre González, J. (2021). Acceptability of sustainable mobility policies under a post-COVID-19 scenario. Evidence from Spain. Transport Policy, 106(March), 205–214. https://doi.org/10.1016/j.tranpol.2021.04.010 Badr, H. S., Hongru, D., Maximilian, M., Ensheng, D., M, S. M., & M, G. L. (2020). Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect Dis, January, 19–21. Barbarossa, L. (2020). The post pandemic city: Challenges and opportunities for a non-motorized urban environment. An overview of Italian cases. Sustainability (Switzerland), 12(17), 1–19. https://doi.org/10.3390/su12177172 Basu, R., & Ferreira, J. (2021). Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19. Transport Policy, 103(December 2020), 197–210. https://doi.org/10.1016/j.tranpol.2021.01.006 Cepeda-Carrion, G., Cegarra-Navarro, J. G., & Cillo, V. (2019). Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. Journal of Knowledge Management, 23(1), 67–89. https://doi.org/10.1108/JKM-05-2018-0322 Chang, H., Lee, B., Yang, F., & Liou, Y. (2021). Does COVID-19 affect metro use in Taipei? Journal of Transport Geography, January. Chen, K.-P., Yang, J.-C., & Yang, T.-T. (2020). Spontaneous Population Mobility and Demand for Transportation during the Pandemic: Evidence from Taiwan. Chen, M. H., Jang, S. C. (Shawn), & Kim, W. G. (2007). The impact of the SARS outbreak on Taiwanese hotel stock performance: An event-study approach. International Journal of Hospitality Management, 26(1), 200–212. https://doi.org/10.1016/j.ijhm.2005.11.004 Chibwe, J., Heydari, S., Faghih Imani, A., & Scurtu, A. (2021). An exploratory analysis of the trend in the demand for the London bike-sharing system: From London Olympics to Covid-19 pandemic. Sustainable Cities and Society, 69(March), 102871. https://doi.org/10.1016/j.scs.2021.102871 Choi, J., Lee, W. Do, Park, W. H., Kim, C., Choi, K., & Joh, C. H. (2014). Analyzing changes in travel behavior in time and space using household travel surveys in Seoul Metropolitan Area over eight years. Travel Behaviour and Society, 1(1), 3–14. https://doi.org/10.1016/j.tbs.2013.10.003 Chou, J., Kuo, N.-F., & Peng, S.-L. (2004). Potential Impacts of the SARS Outbreak on Taiwan’s Economy. Asian Economic Papers, 3(1), 84–99. https://doi.org/10.1162/1535351041747969 Chou, W. P., Wang, P. W., Chen, S. L., Chang, Y. P., Wu, C. F., Lu, W. H., & Yen, C. F. (2020). Voluntary reduction of social interaction during the covid‐19 pandemic in taiwan: Related factors and association with perceived social support. International Journal of Environmental Research and Public Health, 17(21), 1–12. https://doi.org/10.3390/ijerph17218039 Corazza, M. V., & Musso, A. (2021). Urban transport policies in the time of pandemic, and after: An ARDUOUS research agenda. Transport Policy, 103(December 2020), 31–44. https://doi.org/10.1016/j.tranpol.2021.01.010 Cot, C., Cacciapaglia, G., & Sannino, F. (2021). Mining Google and Apple mobility data: temporal anatomy for COVID-19 social distancing. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-83441-4 da Schio, N., Phillips, A., Fransen, K., Wolff, M., Haase, D., Ostoić, S. K., Živojinović, I., Vuletić, D., Derks, J., Davies, C., Lafortezza, R., Roitsch, D., Winkel, G., & De Vreese, R. (2021). The impact of the COVID-19 pandemic on the use of and attitudes towards urban forests and green spaces: Exploring the instigators of change in Belgium. Urban Forestry and Urban Greening, 65(August). https://doi.org/10.1016/j.ufug.2021.127305 Derks, J., Giessen, L., & Winkel, G. (2020). COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. Forest Policy and Economics, 118(April), 102253. https://doi.org/10.1016/j.forpol.2020.102253 Echaniz, E., Rodríguez, A., Cordera, R., Benavente, J., Alonso, B., & Sañudo, R. (2021). Behavioural changes in transport and future repercussions of the COVID-19 outbreak in Spain. Transport Policy, 111(May), 38–52. https://doi.org/10.1016/j.tranpol.2021.07.011 Eisenmann, C., Nobis, C., Kolarova, V., Lenz, B., & Winkler, C. (2021). Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground. Transport Policy, 103(January), 60–67. https://doi.org/10.1016/j.tranpol.2021.01.012 Erdönmez, C., & Atmiş, E. (2021). The impact of the Covid-19 pandemic on green space use in Turkey: Is closing green spaces for use a solution? Urban Forestry and Urban Greening, 64(August). https://doi.org/10.1016/j.ufug.2021.127295 Guo, Y., Yu, H., Zhang, G., & Ma, D. T. (2021). Exploring the impacts of travel-implied policy factors on COVID-19 spread within communities based on multi-source data interpretations. Health and Place, February. Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109(August 2019), 101–110. https://doi.org/10.1016/j.jbusres.2019.11.069 Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128 Hamdollah, R., & Baghaei, P. (2016). Partial least squares structural equation modeling with R. Practical Assessment, Research and Evaluation, 21(1), 1–16. Hensher, D. A., Wei, E., Beck, M. J., & Balbontin, C. (2021). The impact of COVID-19 on cost outlays for car and public transport commuting - The case of the Greater Sydney Metropolitan Area after three months of restrictions. Transport Policy, 101(December 2020), 71–80. https://doi.org/10.1016/j.tranpol.2020.12.003 Honey-Rosés, J., Anguelovski, I., Chireh, V. K., Daher, C., Konijnendijk van den Bosch, C., Litt, J. S., Mawani, V., McCall, M. K., Orellana, A., Oscilowicz, E., Sánchez, U., Senbel, M., Tan, X., Villagomez, E., Zapata, O., & Nieuwenhuijsen, M. J. (2020). The impact of COVID-19 on public space: an early review of the emerging questions – design, perceptions and inequities. Cities & Health, 00(00), 1–17. https://doi.org/10.1080/23748834.2020.1780074 Hsieh, C. C., Lin, C. H., Wang, W. Y. C., Pauleen, D. J., & Chen, J. V. (2020). The outcome and implications of public precautionary measures in taiwan–declining respiratory disease cases in the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 17(13), 1–10. https://doi.org/10.3390/ijerph17134877 Johnson, T. F., Hordley, L. A., Greenwell, M. P., & Evans, L. C. (2021). Associations between COVID-19 transmission rates, park use, and landscape structure. Science of the Total Environment, 789, 148123. https://doi.org/10.1016/j.scitotenv.2021.148123 Jung, Y., Chung, I. R., & Park, I. K. (2021). Mobility Inequality under Health Risks : Discriminative Impacts of COVID-19 and Fine Dust on the Use of Urban Parks. 1–11. Kim, C., Cheon, S. H., Choi, K., Joh, C. H., & Lee, H. J. (2017). Exposure to fear: Changes in travel behavior during MERS outbreak in Seoul. KSCE Journal of Civil Engineering, 21(7), 2888–2895. https://doi.org/10.1007/s12205-017-0821-5 Kim, D. (2021). Exploratory study on the spatial relationship between emerging infectious diseases and urban characteristics: Cases from Korea. Sustainable Cities and Society, 66(December 2020), 102672. https://doi.org/10.1016/j.scs.2020.102672 Lau, J. T. F., Kim, J. H., Tsui, H., & Griffiths, S. (2007). Anticipated and current preventive behaviors in response to an anticipated human-to-human H5N1 epidemic in the Hong Kong Chinese general population. BMC Infectious Diseases, 7, 1–12. https://doi.org/10.1186/1471-2334-7-18 Lee, P. J., & Jeong, J. H. (2021). Attitudes towards outdoor and neighbour noise during the COVID-19 lockdown: A case study in London. Sustainable Cities and Society, 67(February), 102768. https://doi.org/10.1016/j.scs.2021.102768 Li, A., Zhao, P., Haitao, H., Mansourian, A., & Axhausen, K. W. (2021). How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial-temporal-semantic analytics. Computers, Environment and Urban Systems, 90, 101703. https://doi.org/10.1016/j.compenvurbsys.2021.101703 Li, B., Peng, Y., He, H., Wang, M., & Feng, T. (2021). Built environment and early infection of COVID-19 in urban districts: A case study of Huangzhou. Sustainable Cities and Society, 66(December 2020), 1–10. https://doi.org/10.1016/j.scs.2020.102685 Li, S., Ma, S., & Zhang, J. (2021). Association of built environment attributes with the spread of COVID-19 at its initial stage in China. Sustainable Cities and Society, 67(December 2020), 102752. https://doi.org/10.1016/j.scs.2021.102752 Magno, F., & Cassia, F. (2021). Effects of agritourism businesses’ strategies to cope with the COVID-19 crisis: The key role of corporate social responsibility (CSR) behaviours. Journal of Cleaner Production, 325(April). https://doi.org/10.1016/j.jclepro.2021.129292 Megahed, N. A., & Ghoneim, E. M. (2020). Antivirus-built environment: Lessons learned from Covid-19 pandemic. Sustainable Cities and Society, 61(May), 102350. https://doi.org/10.1016/j.scs.2020.102350 Park, J. (2020). Changes in Subway Ridership in Response to COVID-19 in Seoul, South Korea: Implications for Social Distancing. Cureus, 12(4). https://doi.org/10.7759/cureus.7668 Pett, M., Lackey, N., & Sullivan, J. (2011). An Overview of Factor Analysis, 2–12. https://doi.org/10.4135/9781412984898.n1 Pipitone, J. M., & Jović, S. (2021). Urban green equity and COVID-19: Effects on park use and sense of belonging in New York City. Urban Forestry and Urban Greening, 65(August). https://doi.org/10.1016/j.ufug.2021.127338 Pullano, G., Valdano, E., Scarpa, N., & Colizza, S. (2020). Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: a population-based study. Lancet Digit Health, January, 19–21. Saha, J., Barman, B., & Chouhan, P. (2020). Lockdown for COVID-19 and its impact on community mobility in India: An analysis of the COVID-19 Community Mobility Reports, 2020. Children and Youth Services Review, 116(June), 105160. https://doi.org/10.1016/j.childyouth.2020.105160 Sarstedt, M., Ringle, C. M., & Hair, J. F. (2020). Partial Least Squares Structural Equation Modeling. In Handbook of Market Research (Issue September). https://doi.org/10.1007/978-3-319-05542-8 Scorrano, M., & Danielis, R. (2021). Active mobility in an Italian city: Mode choice determinants and attitudes before and during the Covid-19 emergency. Research in Transportation Economics, 86(December 2020), 101031. https://doi.org/10.1016/j.retrec.2021.101031 Shokouhyar, S., Shokoohyar, S., Sobhani, A., & Gorizi, A. J. (2021). Shared mobility in post-COVID era: New challenges and opportunities. Sustainable Cities and Society, 67(December 2020), 102714. https://doi.org/10.1016/j.scs.2021.102714 Slater, S. J., Christiana, R. W., & Gustat, J. (2020). Recommendations for keeping parks and green space accessible for mental and physical health during COVID-19 and other pandemics. Preventing Chronic Disease, 17(17), 1–5. https://doi.org/10.5888/PCD17.200204 Sui, Y., Zhang, H., Shang, W., Sun, R., Wang, C., Ji, J., Song, X., & Fengjing, S. (2020). Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future. Applied Energy, January. Sun, G., Du, Y., Ni, M. Y., Zhao, J., & Webster, C. (2021). Metro and elderly health in Hong Kong: Protocol for a natural experiment study in a high-density city. BMJ Open, 11(3), 1–8. https://doi.org/10.1136/bmjopen-2020-043983 Tan, W.-J., & Enderwick, P. (2007). Managing Threats in the Global Era: The Impact and Response to SARS. Thunderbird International Business Review, 49(5), 516–536. https://doi.org/10.1002/tie Tarasi, D., Daras, T., Tournaki, S., & Tsoutsos, T. (2021). Transportation in the Mediterranean during the COVID-19 pandemic era. Global Transitions, 3, 55–71. https://doi.org/10.1016/j.glt.2020.12.003 Tran, B. L., Chen, C. C., Tseng, W. C., & Liao, S. Y. (2020). Tourism under the early phase of COVID-19 in four apec economies: An estimation with special focus on sars experiences. International Journal of Environmental Research and Public Health, 17(20), 1–13. https://doi.org/10.3390/ijerph17207543 Uchiyama, Y., & Kohsaka, R. (2020). Access and use of green areas during the covid-19 pandemic: Green infrastructure management in the “new normal.” Sustainability (Switzerland), 12(23), 1–9. https://doi.org/10.3390/su12239842 Ugolini, F., Massetti, L., Calaza-Martínez, P., Cariñanos, P., Dobbs, C., Ostoic, S. K., Marin, A. M., Pearlmutter, D., Saaroni, H., Šaulienė, I., Simoneti, M., Verlič, A., Vuletić, D., & Sanesi, G. (2020). Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. Urban Forestry and Urban Greening, 56(June). https://doi.org/10.1016/j.ufug.2020.126888 Ugolini, F., Massetti, L., Pearlmutter, D., & Sanesi, G. (2021). Usage of urban green space and related feelings of deprivation during the COVID-19 lockdown: Lessons learned from an Italian case study. Land Use Policy, 105(March), 105437. https://doi.org/10.1016/j.landusepol.2021.105437 Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H., & Nowell, M. S. (2021). Back to nature: Norwegians sustain increased recreational use of urban green space months after the COVID-19 outbreak. Landscape and Urban Planning, 214(December 2020), 104175. https://doi.org/10.1016/j.landurbplan.2021.104175 Vickerman, R. (2020). Will Covid-19 put the public back in public transport? A UK perspective Roger. Transport Policy, January, 95–102. Viezzer, J., & Biondi, D. (2021). The influence of urban, socio-economic, and eco-environmental aspects on COVID-19 cases, deaths and mortality: A multi-city case in the Atlantic Forest, Brazil. Sustainable Cities and Society, 69(December 2020). https://doi.org/10.1016/j.scs.2021.102859 Wang, J. (2021). Vision of China’s future urban construction reform: In the perspective of comprehensive prevention and control for multi disasters. Sustainable Cities and Society, 64(September 2020), 102511. https://doi.org/10.1016/j.scs.2020.102511 Zhang, J., Hayashi, Y., & Frank, L. D. (2021). COVID-19 and transport: Findings from a world-wide expert survey. Transport Policy, 103(December 2020), 68–85. https://doi.org/10.1016/j.tranpol.2021.01.011 Zhang, Y., & Fricker, J. D. (2021). Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model. Transport Policy, 103(January), 11–20. https://doi.org/10.1016/j.tranpol.2021.01.013 中文部分 白仁德 & 劉人華 (2014) 大眾運輸導向建成環境特性對捷運運量影響之研究-以臺北捷運為實證對象. 建築與規劃學報第十五卷 第二/三期. 111-128 余淑吟 (2019) 以 PLS-SEM 模式探討中高齡者在社群網路的使用強度與自我揭露對網路社會支持與自尊感的關係. 國立臺灣科技大學 人文社會學報, 1–29. 李承傑 & 董旭英 (2017) 偏最小平方法結構方程模型. 科學發展539期, 20–25. 林孝恩 (2016) 臺北市住宅基地規模與開發強度之影響因素. 國立政治大學地政學系暨私立中國地政研究所碩士論文 邱皓政 (2011) 當 PLS 遇上 SEM:議題與對話. Αβγ量化研究學刊 第三卷 第一期, 3(1), 20–53. 張紹勳 & 林秀娟 (2018) 多層次模型(HLM)及重複測量:使用SPSS分析. 五南圖書出版股份有限公司 黃財尉 (2003) 共同因素分析與主成份分析之比較. 彰化師大 輔導學報 25期, 63-86 蕭文龍 (2009) 多變量分析最佳入門實用書. Gotop 碁峰資訊 網頁參考資料 Apple Inc.,Apple Maps 移動趨勢報告,取用日期:2021年11月28日,https://covid19.apple.com/mobility Asian Development Blog,賦予城市更多(綠色)空間,讓城市更健康,取用日期:2021年11月1日,https://blogs.adb.org/zh/healthier-cities-its-time-we-gave-them-some-green-space BBC,新冠疫苗推廣困局:全球超過50國未達世衛10%接種率目標,取用日期:2021年11月28日,https://www.bbc.com/zhongwen/trad/world-58758648 Google,COVID-19社區人流趨勢報告,取用日期:2021年11月28日,https://www.google.com/covid19/mobility/ Google,社區人流趨勢報告說明,取用日期:2021年11月29日,https://support.google.com/covid19-mobility/answer/9824897?hl=zh-Hant&ref_topic=9822927#zippy= HENNGE,從人流狀況看出三級警戒對台影響,取用日期:2021年11月1日,https://hennge.com/tw/blog/How-Taiwan-reacted-under-epidemic-alert-level3.html https://rsprc.ntu.edu.tw/zh-tw/m01-3/climate-change/1603-0630-city-resilienceb.html i自然全媒體,這次疫情帶給國土空間規劃哪些啟示?值得我們反思,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/nvYxFKHF_0U807w0KTkjhA LINE TODAY,臺灣民眾關不住了?Google、蘋果數據揭「人潮確實有增加」,取用日期:2021年11月1日,https://today.line.me/tw/v2/article/kD27M1 National Science Foundation,Parks not only safe, but essential during the pandemic,取用日期:2021年11月1日,https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=302788&org=NSF&from=news Our World in Data,Coronavirus Pandemic (COVID-19) – the data,取用日期:2021年11月29日,https://ourworldindata.org/coronavirus-data Robert Wood Johnson Foundation,Healthy Places by Design官方網站,取用日期:2021年11月28日,https://healthyplacesbydesign.org/ SCP,聚焦2021世界城市峰會:後疫情時代的城市化怎樣做,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/QcSPpkJa63ErdVW7SlLsTg VPon威朋、Money錢,臺灣消費趨勢洞察:數據觀察疫情影響下的消費行為變化,取用日期:2021年11月1日,https://www.vpon.com/wp-content/uploads/2020_consumption_analysis_report-1.pdf YODEX,疫情時代都市戶外集散空間改造方法研究(中國文化大學景觀學系),取用日期:2021年11月1日,https://www.yodex.com.tw/exhibit/2204 中央社,Google數據:臺灣大眾運輸人流減半 雜貨量販店5月中暴增反映搶購潮,取用日期:2021年11月1日,https://www.cna.com.tw/news/firstnews/202106015003.aspx 中央研究院數位文化中心,有圖來解─社交距離對於延緩COVID-19疫情的影響,取用日期:2021年11月1日,https://covid19.ascdc.tw/essay/141 中華民國衛生福利部,H5N1禽流感須知,取用日期:2021年11月28日,https://www.cdc.gov.tw/Category/ListContent/YOV9UFS6G0mxK6hM1NARmg?uaid=YA9ZPi1bP5etpkGUMoP09w 中華民國衛生福利部,中東呼吸症候群冠狀病毒感染症疾病介紹,取用日期:2021年11月28日,https://www.cdc.gov.tw/Category/Page/gVEmUF0UzFMFcsMeTn_bHg 中華民國衛生福利部,嚴重急性呼吸道症候群疾病介紹,取用日期:2021年11月28日,https://www.cdc.gov.tw/Category/Page/Kou_i6ATU8jUnmKlAORhUA 中華民國衛生福利部,嚴重特殊傳染性肺炎疾病介紹取用日期:2021年11月28日,https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A 天下雜誌獨立評論,後疫情時代,讓都市規劃留點白吧!,取用日期:2021年11月1日,https://opinion.cw.com.tw/blog/profile/263/article/9557 王國恩、陳道遠,新型冠狀病毒疫情引發的規劃思考,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/2Xz4oLHcgYJepGpC5Hzwog 石曉冬,防控新冠疫情下的八點規劃思考,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/S5l4DUnBBMoX6XoZFVWdYw 冷紅、李姝媛,基於急性傳染病疫情防控的規劃響應,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/Zd0-HJLkjUuTn2f1AmUvHQ 李華峰,新冠疫情下央企「十四五」規劃,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/dMNo-OfGAe2Stc-wYIvUPg 林欣渝,疫情下的臺灣-報復性旅遊,取用日期:2021年11月28日,https://www.peopo.org/news/476322 社企流,疫情成交通轉型好時機!巴黎推「15 分鐘城市」,臺灣下一步往哪走?,取用日期:2021年11月1日,https://www.seinsights.asia/article/3289/3271/7963 科技部駐美國台北經濟文化代表處科技組,NSF研究發現:COVID-19大流行期間,公園不僅安全而且很重要,取用日期:2021年11月1日,https://www.most.gov.tw/dc/ch/detail/26744e00-123f-42d9-8169-72f6eb9528ee 科學月刊,用Google資料看人群移動與COVID-19傳播,取用日期:2021年11月1日,https://www.scimonth.com.tw/archives/5239 國立臺灣大學社會科學院風險社會與政策研究中心,後疫情的城市韌性挑戰,取用日期:2021年11月1日,https://rsprc.ntu.edu.tw/zh-tw/m01-3/understand-risk-society/1550-1100222-covid.html 國立臺灣大學社會科學院風險社會與政策研究中心,疫情、高溫雙重夾擊! 綠地如何提升城市韌性? ,取用日期:2021年11月1日, 郭瓊瑩,回顧自然基盤的未來城市新想像,取用日期:2021年11月1日,https://www.fiabci.org.tw/Backend/Uploads/FIE110000000002/04.中國文化大學-郭瓊瑩教授.pdf 報導者,【不斷更新】武漢肺炎大事記:從全球到臺灣,疫情如何發展?,取用日期:2021年11月1日,https://www.twreporter.org/a/2019-ncov-epidemic 報導者,臺灣社區流行傳播大解盲:哪些是超級傳播事件?三級警戒政策夠即時嗎?全民防疫效果如何?,取用日期:2021年11月1日,https://www.twreporter.org/a/covid-19-rt 新家華建築,後疫情時代「Neighborhood」新鄰里關係 這群新竹在地團隊開啟台灣與國際建築的對話,取用日期:2022年5月17日,https://www.cw.com.tw/article/5120967?utm_campaign=line_-website_share-icon&utm_medium=website_share&utm_source=line_ 雷誠,直面「新冠」疫情的城市規劃反思,取用日期:2021年10月26日,https://mp.weixin.qq.com/s/RSPtL2VQB015LhCffjG2NQ |
Description: | 碩士 國立政治大學 地政學系 109257014 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109257014 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202200744 |
Appears in Collections: | [地政學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
701401.pdf | | 8731Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|