English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51112353      Online Users : 877
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/141183
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141183


    Title: 選擇權偏微分方程之數值分析: 有限差分法及類神經網路法之應用
    Numerical Analysis of Option Partial Differential Equations: Applications of Finite Difference and Neural Networks Methods
    Authors: 方麒豪
    Fang, Chi-Hao
    Contributors: 許順吉
    林士貴

    Sheu, Shuenn-Jyi
    Lin, Shih-Kuei

    方麒豪
    Fang, Chi-Hao
    Keywords: 類神經網路
    有限差分法
    Merton 偏積分微分方程
    Black- Scholes 偏微分方程
    歐式選擇權價格
    Neural Networks
    Finite Difference
    Merton PIDE
    Black-Scholes PDE
    European Call Option Price
    Date: 2022
    Issue Date: 2022-08-01 18:13:19 (UTC+8)
    Abstract: M. Raissi et al.(2019) 首先提出使用監督式學習方法用於求解偏微分方程。他們著重於有封閉解的偏微分方程並且使用封閉解與預測值的差距作為類神經網路的損失函數於訓練中。Lu et al.(2019) 提出更有效率的演算法用於求解多種類型的偏微分方程,包含正演問題以及反演問題。本文將著重於觀察歐式選擇權的類神經網路預測值行為與封閉解的差距並且跟有限差分法進行比較。
    M. Raissi et al.(2019) first proposed a supervised learning method for solving partial differential equations. They focused on partial differential equations that have closed form solutions and used the difference between closed form solutions and neural network outputs as loss function for training. Lu et al.(2019) presented an efficient algorithm for solving several types of partial differential equations, including forward problem and inverse problems. This dissertation aims at observing the behaviour of European call option prices predicted by neural networks and comparing it with closed form price.
    Reference: Cont, R., & Voltchkova, E. (2006). A finite difference scheme for option pricing in jump
    diffusion and exponential lévy models. SIAM Journal on Numerical Analysis, 43(4),
    1596–1626. https://doi.org/10.1137/S0036142903436186
    Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
    Control, Signals, and Systems, 2, 303–314. https://doi.org/10.1007/BF02551274
    Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks
    with a nonpolynomial activation function can approximate any function. Neural
    Networks, 6(6), 861–867. https://doi.org/10.1016/S0893-6080(05)80131-5
    Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). Deepxde: A deep learning library for
    solving differential equations. SIAM Review, 63(1), 208–228. https://doi.org/10.1137/
    19M1274067
    Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A
    deep learning framework for solving forward and inverse problems involving nonlinear
    partial differential equations. Journal of Computational Physics, 378(1), 686–707. https:
    //doi.org/10.1016/j.jcp.2018.10.045
    Schwartz, E. (1977). The valuation of warrants: Implementing a new approach. Journal of
    Financial Economics, 4, 79–93. https://doi.org/10.1016/0304-405X(77)90037-X
    30
    Description: 碩士
    國立政治大學
    應用數學系
    109751007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109751007
    Data Type: thesis
    DOI: 10.6814/NCCU202201023
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100701.pdf638KbAdobe PDF2145View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback