政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141134
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51024200      Online Users : 904
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > International MBA > Theses >  Item 140.119/141134
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141134


    Title: 比特加密貨幣指數之間的波動度外溢效果的實證研究
    Analysing the volatility spillovers between cryptocurrency indices
    Authors: 任魯姆
    Ramadani, Lumta
    Contributors: 蔡政憲
    Tsai, Jason
    任魯姆
    Lumta Ramadani
    Keywords: 比特幣
    加密貨幣
    以太坊
    GARCH模型
    波動度外溢
    Bitcoin
    Cryptocurrencies
    Ethereum
    GARCH models
    Volatility Spillovers
    Date: 2022
    Issue Date: 2022-08-01 17:41:56 (UTC+8)
    Abstract: The research analyses the volatility spillovers of the S&P Bitcoin and the S&P Ethereum Indexes as a hot research topic nowadays. This market is growing, thus it is important for investors and policy makers to understand the price volatility and make better investment and policy decisions. The data is extracted online from the S&P Cryptocurrency Index from the period April 2016 to April 2022. The data was chosen before COVID-19, and the impact of the virus on these two indices up to April, 2022. The results show a volatility clustering between these two indices. Moreover, the news in the S&P Bitcoin Index price returns impact largely the future volatility of the S&P Index price returns, and vice versa. There is a lack of literature for the Ethereum market, and researchers need to conduct research on this yet new market. Therefore, we hope that our thesis empirical research can influence future researchers to conduct more research in this field.
    Reference: Alexander, C., Choi, J., Massie, H. and Sohn, S., 2020. Price Discovery and Microstructure in Ether Spot and Derivative Markets. SSRN Electronic Journal,.Auer, R. and Claessens, S., 2018. Regulating cryptocurrencies: assessing market reactions. BIS Quarterly Review September.
    Baur, D., Hong, K. and Lee, A., 2018. Bitcoin: Medium of exchange or speculative assets?. Journal of International Financial Markets, Institutions and Money, 54, pp.177-189.
    Begu, L.S., Spătaru, S. and Marin, E., 2012. Investigating the Evolution of RON/EUR Exchange Rate: The Choice of Appropriate Model. Journal of Social and Economic Statistics, 1(2), pp.23-39.
    Brandvold, M., Molnár, P., Vagstad, K. and Andreas Valstad, O., 2015. Price discovery on Bitcoin exchanges. Journal of International Financial Markets, Institutions and Money, 36, pp.18-35.
    Bouoiyour, J. and Selmi, R., 2015. What does Bitcoin look like?. Annals of Economics & Finance, 16(2).
    Borri, N. and Shakhnov, K., 2020. Regulation spillovers across cryptocurrency markets. Finance Research Letters, 36, p.101333.
    Bouri, E., Molnár, P., Azzi, G., Roubaud, D. and Hagfors, L., 2017. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?. Finance Research Letters, 20, pp.192-198.
    Casals, J., Jerez, M. and Sotoca, S., 2000. Exact smoothing for stationary and non-stationary time series. International Journal of Forecasting, 16(1), pp.59-69.
    Chokor, A. and Alfieri, E., 2021. Long and short-term impacts of regulation in the cryptocurrency market. The Quarterly Review of Economics and Finance, 81, pp.157-173.
    Ciaian, P., Rajcaniova, M. and Kancs, d., 2016. The economics of BitCoin price formation. Applied Economics, 48(19), pp.1799-1815.
    Cheah, E. and Fry, J., 2015. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 130, pp.32-36.
    Corbet, S., Lucey, B., Urquhart, A. and Yarovaya, L., 2019. Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis, 62, pp.182-199.
    Corbet, S., Meegan, A., Larkin, C., Lucey, B. and Yarovaya, L., 2018. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, pp.28-34.
    Corbet, S., Larkin, C., Lucey, B., 2020. The contagion effects of the covid-19 pandemic: Evidence from gold and cryptocurrencies. Finance Research Letters 101554.
    Dyhrberg, A., 2016. Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, pp.85-92.
    Engle, R. and Kroner, K., 1995. Multivariate Simultaneous Generalised ARCH. Econometric Theory, 11(1), pp.122-150.
    Fama, E.F., 1970. Efficient market hypothesis: A review of theory and empirical work. Journal of Finance, 25(2), pp.28-30.
    Ferretti, S. and D`Angelo, G., 2019. On the Ethereum blockchain structure: A complex networks theory perspective. Concurrency and Computation: Practice and Experience, 32(12).
    Frisby, D., 2014. Bitcoin: the future of money?. Unbound Publishing.
    Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D. and Giaglis, G., 2015. Using Time-Series and Sentiment Analysis to Detect the Determinants of Bitcoin Prices. SSRN Electronic Journal.
    Geng, J., Chen, F., Ji, Q. and Liu, B., 2021. Network connectedness between natural gas markets, uncertainty and stock markets. Energy Economics, 95, p.105001.
    Huang, Y., Duan, K. and Mishra, T., 2021. Is Bitcoin really more than a diversifier? A pre- and post-COVID-19 analysis. Finance Research Letters, 43, p.102016.
    Katsiampa, P., Corbet, S. and Lucey, B., 2019. Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis. Finance Research Letters, 29, pp.68-74.
    Katsiampa, P., 2017. Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, pp.3-6.
    Katsiampa, P., 2019. Volatility co-movement between Bitcoin and Ether. Finance Research Letters, 30, pp.221-227.
    Khuntia, S. and Pattanayak, J., 2018. Adaptive market hypothesis and evolving predictability of bitcoin. Economics Letters, 167, pp.26-28.
    Kristoufek, L., 2013. BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3(1).
    Kroll, J.A., Davey, I.C. and Felten, E.W., 2013, June. The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In Proceedings of WEIS (Vol. 2013, No. 11).
    Kondo, M., Oliva, G., Jiang, Z., Hassan, A. and Mizuno, O., 2020. Code cloning in smart contracts: a case study on verified contracts from the Ethereum blockchain platform. Empirical Software Engineering, 25(6), pp.4617-4675.
    Li, X. and Wang, C., 2017. The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin. Decision Support Systems, 95, pp.49-60.
    Nakamoto, S., 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electronic Journal, [online] Available at: <https://bitcoin.org/bitcoin>.
    Özdemir, O., 2022. Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis. Financial Innovation, 8(1).
    Pagnottoni, P. and Dimpfl, T., 2019. Price discovery on Bitcoin markets. Digital Finance, 1(1-4), pp.139-161.
    Panagiotidis, T., Stengos, T. and Vravosinos, O., 2018. On the determinants of bitcoin returns: A LASSO approach. Finance Research Letters, 27, pp.235-240.
    M., Poongodi., Sharma, A., V., V., Bhardwaj, V., Sharma, A., Iqbal, R. and Kumar, R., 2020. Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Computers & Electrical Engineering, 81, p.106527.
    Sjölander, P., 2010. A stationary unbiased finite sample ARCH-LM test procedure. Applied Economics, 43(8), pp.1019-1033.
    Tiwari, A., Kumar, S. and Pathak, R., 2019. Modelling the dynamics of Bitcoin and Litecoin: GARCH versus stochastic volatility models. Applied Economics, 51(37), pp.4073-4082.
    Urquhart, A., 2016. The inefficiency of Bitcoin. Economics Letters, 148, pp.80-82.
    Urquhart, A. and Zhang, H., 2019. Is Bitcoin a hedge or safe haven for currencies? An intraday analysis. International Review of Financial Analysis, 63, pp.49-57.
    Weber, B., 2016. Bitcoin and the legitimacy crisis of money. Cambridge Journal of Economics, 40(1), pp.17-41.
    Description: 碩士
    國立政治大學
    國際經營管理英語碩士學位學程(IMBA)
    109933049
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109933049
    Data Type: thesis
    DOI: 10.6814/NCCU202200763
    Appears in Collections:[International MBA] Theses

    Files in This Item:

    File Description SizeFormat
    304901.pdf867KbAdobe PDF2169View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback