English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804219      Online Users : 726
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141081


    Title: 利率變動下美元計價可贖回債券之實證分析
    An empirical examination of dollar-denominated callable bonds under the interest rate uncertainty
    Authors: 傅祥庭
    Fu, Hsiang-Ting
    Contributors: 張士傑
    Chang, Shih-Chieh
    傅祥庭
    Fu, Hsiang-Ting
    Keywords: 國際債券
    Hull White 短期利率模型
    三元樹法
    隱含選擇權
    International bonds
    Hull-White short rate model
    Trinomial tree method
    Implied option
    Date: 2022
    Issue Date: 2022-08-01 17:33:25 (UTC+8)
    Abstract: 國際債券市場中,以美元計價的可贖回債券占最多數,美國於2020年時連續降息,造成159檔國際債券遭提前贖回,顯現出壽險公司面臨的可贖回風險。因此本文參照宣葳與張士傑(2019)的方法,使用美國政府公債的利率資料以建立利率期限結構,並使用歐式利率交換選擇權來估計Hull-White短期利率模型的參數,最後以三元樹法來評價國際債券,衡量國際債券隱含可贖回權的價值。本研究將分別探討可贖回債券的隱含年利率、可贖回頻率、不可贖回期間對可贖回債券期初價值與可贖回權價值的影響。
    研究結果顯示,(1) 給定三十年期可贖回債券可贖回頻率為5年,不可贖回期間為7年,當隱含年利率從3.5%上升至5.5%時,該債券期初價值由30下降至22.1隱含選擇權價值由9.8上升至17.2。 (2) 給定三十年期可贖回債券不可贖回期間為10年,隱含年利率為4.5%當可贖回頻率由5年增加至1年時,該債券期初價值由27.5下降至27隱含選擇權價值由12上升至12.8。 (3) 給定三十年期可贖回債券可贖回頻率為5年,隱含年利率為 5.5%,當不可贖回期間由1年增加至10年時,該債券期初價值由20增加至24隱含選擇權價值由19.5降低至15.9。
    In 2020, the United States has successively cut interest rates, resulting in the redemption of 159 international bonds, showing the call risk faced by the life insurance industry. In this study, based on the Hull-White short rate model, we detail how we use the US Treasury Constant Maturity Rate to construct the interest rate term structure, together with the implied volatility on the European swaption to calibrate the parameters of the Hull-White short rate model. Then we use the trinomial tree method to compute the fair value of the dollar-denominated callable bonds, and compute the value of implied option.
    We find that: (1) given a 30-year callable bond which has a call frequency of 5 years and a non-call period of 7 years, when the implied annual interest rate rose from 3.5% to 5.5%, the initial value of the bond decreased from 30 to 22.1, and the value of implied option increased from 9.8 to 17.2; (2) given a 30-year callable bond with a non-call period of 10 years and an implied annual interest rate of 4.5%, when the call frequency increased from 5 years to 1 year, the initial value of the bond decreased from 27.5 to 27, and the value of implied option increased from 12 to 12.8; (3) given a 30-year callable bond with a calla frequency of 5 years and an implied annual interest rate of 5.5%, when the non-call period increased from 1 year to 10 years, the initial value of the bond increased from 20 to 24, and the value of implied option decreased from 19.5 to 15.9.
    Reference: 杜昌燁、張士傑(2021),國際板債券之再投資風險估計,證券市場發展季刊,第33卷第4期,頁77-102。
    宣葳、張士傑(2019),美金計價可贖回零息債券評價系統-理論與實做,保險專刊,第 35 卷第 3 期,頁245-278。
    張士傑、吳倬瑋(2016),台灣壽險業投資外幣計價國際債券之風險評估,保險專刊,第 32 卷第 4 期,頁333-365。
    Brigo, D. and Mercurio, F. (2006). Interest Rate Models: Theory and Practice, Berlin: Springer-Verlag, Second edition.
    Fabozzi, F. and Mann, S. (2010). Introduction to Fixed Income Analytics: Relative Value Analysis, Risk Measures, and Valuation, Hoboken, New Jersey: John Wiley & Sons, Second edition.
    Hull, J. C. (2018). Options, Futures, and Other Derivatives, Boston: Pearson, Tenth edition.
    Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385-407.
    Hull, J. C. and White, A. (1990). Pricing interest rate derivative securities. The Review of Financial Studies, 3, 573-592.
    Hull, J. C. and White, A. (1993c). One-factor interest rate models and the valuation of interest rate derivative securities. Journal of Financial and Quantitative Analysis, 28, 235-254.
    Hull, J. C. and White, A. (1994a). Numerical procedures for implementing term structure models I: Single-factor models. The Journal of Derivatives, 2, 7-16.
    Hull, J. C. and White, A. (2001). The general Hull-White model and supercalibration. Financial Analysts Journal, 57, 34-43.
    Jamshidian, J. (1989). An exact bond option formula. Journal of Finance, 44, 205-209.
    Jen, F. C. and Wert, J. E. (1967). The effect of call risk on corporate bond yields. The Journal of Finance, 22(4), 637-651.
    Kalotay, A. J., Williams, G. O. and Fabozzi, F. J. (1993). A model for valuing bonds and embedded options. Financial Analysts Journal, 49(3), 35-46.
    Mann, S. V. and Powers, E. A. (2003). Indexing a bond`s call price: an analysis of Make-Whole call provisions. Journal of Corporate Finance, 9(5), 535-554.
    Thomas, S. Y. Ho and Lee, S.-B. (1986). Term structure movements and pricing interest rate contingent claims. The Journal of Finance, 41(5), 1011-1029.
    Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2), 177-188.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    109358025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109358025
    Data Type: thesis
    DOI: 10.6814/NCCU202200944
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    802501.pdf1559KbAdobe PDF226View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback