政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/141068
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51326568      線上人數 : 944
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/141068
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/141068


    題名: 基於自然語言分析建構預測企業信用評等變動之模型
    Construction of Corporate Credit Rating Prediction Model Based on Natural Language Analysis
    作者: 陳明勝
    Chen, Ming-Sheng
    貢獻者: 江彌修
    趙世偉

    Chiang, Mi-Hsiu
    Chao, Shih-Wei

    陳明勝
    Chen, Ming-Sheng
    關鍵詞: 自然語言分析
    神經網路
    領域遷移
    企業信用預警
    Natural Language Analysis
    Neural Network
    Domain Adaption
    Corporate Credit Prediction
    日期: 2022
    上傳時間: 2022-08-01 17:30:32 (UTC+8)
    摘要: 為改進過去語言分析模型無法辨認語言一字多義以及訓練域與預測域不一致之問題,本研究嘗試以BERT(Bidirectional Encoder Representations from Transformers)模型針對金融領域文本進行領域遷移(Domain Adaption),比較有無經過遷移對模型效能之改進,接著以遷移過之模型分析RavenPack資料庫內所含的美國企業相關新聞,並以此建構信用評等變動預警模型。

    本研究實證結果顯示,經過遷移之模型預測財金文本情緒的預測準確率比未經遷移之模型高出30.47%,且領域遷移後辨認的新聞情緒提升對未來企業信用評等變動的預測。另外,本研究建構四個隨機森林模型,用以證明企業金融財務面的媒體情緒隱含對企業未來評級可能變動的有效資訊。
    To improve the inability of the language analysis model to recognize the polysemy of the language and the inconsistency between the training domain and the prediction domain, this study uses the BERT (Bidirectional Encoder Representations from Transformers) model to perform Domain Adaption for the financial corpus. The adaption improves the performance of the model, and we further use the adapted model to analyze the news related to US companies contained in the RavenPack database and construct an early warning model for credit rating changes.

    The empirical results show that the prediction accuracy of the adapted model in predicting the sentiment of financial texts is 30.47% higher than that of the non-adapted one, which shows that adaption learning indeed improves the prediction of the corporate credit rating changes. Also, we developed four different random forest models to prove that the media sentiment on the company`s financial news contains effective information on the possible changes in the company`s future rating.
    參考文獻: Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate
    bankruptcy. The Journal of Finance, 23(4):589–609.
    Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models.
    arXiv preprint arXiv:1908.10063.
    Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
    Machine Learning Research, 3(Jan):993–1022.
    Collin-Dufresn, P., Goldstein, R. S., and Martin, J. S. (2001). The determinants of credit
    spread changes. The Journal of Finance, 56(6):2177–2207.
    Da, Z., Engelberg, J., and Gao, P. (2015). The sum of all fears investor sentiment and asset
    prices. The Review of Financial Studies, 28(1):1–32.
    Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
    of deep bidirectional transformers for language understanding. arXiv preprint
    arXiv:1810.04805.
    Dyer, T., Lang, M., and Stice-Lawrence, L. (2017). The evolution of 10-k textual disclosure: Evidence from latent dirichlet allocation. Journal of Accounting and Economics,
    64(2-3):221–245.
    Ericsson, J., Jacobs, K., and Oviedo, R. (2009). The determinants of credit default swap
    premia. Journal of Financial and Quantitative Analysis, 44(1):109–132.
    Fama, E. F. (1960). Efficient market hypothesis. Diss. PhD Thesis, Ph. D. dissertation.
    Galil, K. and Soffer, G. (2011). Good news, bad news and rating announcements: An
    empirical investigation. Journal of Banking & Finance, 35(11):3101–3119.
    Hajek, P. and Michalak, K. (2013). Feature selection in corporate credit rating prediction.
    Knowledge-Based Systems, 51:72–84.
    Huang, A. H., Lehavy, R., Zang, A. Y., and Zheng, R. (2018). Analyst information discovery and interpretation roles: A topic modeling approach. Management Science,
    64(6):2833–2855.
    Hull, J., Predescu, M., and White, A. (2004). The relationship between credit default swap
    spreads, bond yields, and credit rating announcements. Journal of Banking & Finance,
    28(11):2789–2811.
    Hutto, C. and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment
    analysis of social media text. In Proceedings of the International AAAI Conference on
    Web and Social Media, volume 8, pages 216–225.
    Jarrow, R. A. and Turnbull, S. M. (1995). Pricing derivatives on financial securities subject
    to credit risk. The Journal of Finance, 50(1):53–85.
    Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
    arXiv:1909.11942.
    Lawrence, A. (2013). Individual investors and financial disclosure. Journal of Accounting
    and Economics, 56(1):130–147.
    Lee, Y.-C. (2007). Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications, 33(1):67–74.
    Li, F. (2008). Annual report readability, current earnings, and earnings persistence. Journal of Accounting and Economics, 45(2-3):221–247.
    Li, X., Xie, H., Chen, L., Wang, J., and Deng, X. (2014). News impact on stock price
    return via sentiment analysis. Knowledge-Based Systems, 69:14–23.
    Liberti, J. M. and Petersen, M. A. (2019). Information: Hard and soft. Review of Corporate
    Finance Studies, 8(1):1–41.
    Loughran, T. and McDonald, B. (2011). When is a liability not a liability? textual analysis,
    dictionaries, and 10-ks. The Journal of Finance, 66(1):35–65.
    Loughran, T. and McDonald, B. (2014). Measuring readability in financial disclosures.
    the Journal of Finance, 69(4):1643–1671.
    Loughran, T. and McDonald, B. (2016). Textual analysis in accounting and finance: A
    survey. Journal of Accounting Research, 54(4):1187–1230.
    Lu, H.-M., Tsai, F.-T., Chen, H., Hung, M.-W., and Li, S.-H. (2012). Credit rating change
    modeling using news and financial ratios. ACM Transactions on Management Information Systems (TMIS), 3(3):1–30.
    Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
    Mayew, W. J. and Venkatachalam, M. (2012). The power of voice: Managerial affective
    states and future firm performance. The Journal of Finance, 67(1):1–43.
    Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics
    and Management Science, pages 141–183.
    Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates.
    The Journal of Finance, 29(2):449–470.
    Miller, B. P. (2010). The effects of reporting complexity on small and large investor
    trading. The Accounting Review, 85(6):2107–2143.
    Norden, L. (2017). Information in cds spreads. Journal of Banking & Finance, 75:118–
    135.
    Norden, L. and Weber, M. (2004). Informational efficiency of credit default swap and
    stock markets: The impact of credit rating announcements. Journal of Banking & Finance, 28(11):2813–2843.
    Orsenigo, C. and Vercellis, C. (2013). Linear versus nonlinear dimensionality reduction
    for banks’credit rating prediction. Knowledge-Based Systems, 47:14–22.
    Pedrosa, M. (1998). Systematic risk in corporate bond credit spreads. Journal of Fixed
    Income, 8(3):7–26.
    Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
    P. J., et al. (2020). Exploring the limits of transfer learning with a unified text-to-text
    transformer. J. Mach. Learn. Res., 21(140):1–67.
    Shapiro, A. H., Sudhof, M., and Wilson, D. J. (2020). Measuring news sentiment. Journal
    of Econometrics.
    Smales, L. A. (2016). News sentiment and bank credit risk. Journal of Empirical Finance,
    38:37–61.
    Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock
    market. The Journal of Finance, 62(3):1139–1168.
    Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamentals. The journal of finance, 63(3):1437–
    1467.
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
    and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
    Processing Systems, 30.
    Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).
    Xlnet: Generalized autoregressive pretraining for language understanding. Advances
    in Neural Information Processing Systems, 32.
    描述: 碩士
    國立政治大學
    金融學系
    109352029
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109352029
    資料類型: thesis
    DOI: 10.6814/NCCU202200901
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    202901.pdf2380KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋