Reference: | Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4):589–609. Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063. Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan):993–1022. Collin-Dufresn, P., Goldstein, R. S., and Martin, J. S. (2001). The determinants of credit spread changes. The Journal of Finance, 56(6):2177–2207. Da, Z., Engelberg, J., and Gao, P. (2015). The sum of all fears investor sentiment and asset prices. The Review of Financial Studies, 28(1):1–32. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Dyer, T., Lang, M., and Stice-Lawrence, L. (2017). The evolution of 10-k textual disclosure: Evidence from latent dirichlet allocation. Journal of Accounting and Economics, 64(2-3):221–245. Ericsson, J., Jacobs, K., and Oviedo, R. (2009). The determinants of credit default swap premia. Journal of Financial and Quantitative Analysis, 44(1):109–132. Fama, E. F. (1960). Efficient market hypothesis. Diss. PhD Thesis, Ph. D. dissertation. Galil, K. and Soffer, G. (2011). Good news, bad news and rating announcements: An empirical investigation. Journal of Banking & Finance, 35(11):3101–3119. Hajek, P. and Michalak, K. (2013). Feature selection in corporate credit rating prediction. Knowledge-Based Systems, 51:72–84. Huang, A. H., Lehavy, R., Zang, A. Y., and Zheng, R. (2018). Analyst information discovery and interpretation roles: A topic modeling approach. Management Science, 64(6):2833–2855. Hull, J., Predescu, M., and White, A. (2004). The relationship between credit default swap spreads, bond yields, and credit rating announcements. Journal of Banking & Finance, 28(11):2789–2811. Hutto, C. and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the International AAAI Conference on Web and Social Media, volume 8, pages 216–225. Jarrow, R. A. and Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The Journal of Finance, 50(1):53–85. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. Lawrence, A. (2013). Individual investors and financial disclosure. Journal of Accounting and Economics, 56(1):130–147. Lee, Y.-C. (2007). Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications, 33(1):67–74. Li, F. (2008). Annual report readability, current earnings, and earnings persistence. Journal of Accounting and Economics, 45(2-3):221–247. Li, X., Xie, H., Chen, L., Wang, J., and Deng, X. (2014). News impact on stock price return via sentiment analysis. Knowledge-Based Systems, 69:14–23. Liberti, J. M. and Petersen, M. A. (2019). Information: Hard and soft. Review of Corporate Finance Studies, 8(1):1–41. Loughran, T. and McDonald, B. (2011). When is a liability not a liability? textual analysis, dictionaries, and 10-ks. The Journal of Finance, 66(1):35–65. Loughran, T. and McDonald, B. (2014). Measuring readability in financial disclosures. the Journal of Finance, 69(4):1643–1671. Loughran, T. and McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4):1187–1230. Lu, H.-M., Tsai, F.-T., Chen, H., Hung, M.-W., and Li, S.-H. (2012). Credit rating change modeling using news and financial ratios. ACM Transactions on Management Information Systems (TMIS), 3(3):1–30. Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30. Mayew, W. J. and Venkatachalam, M. (2012). The power of voice: Managerial affective states and future firm performance. The Journal of Finance, 67(1):1–43. Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, pages 141–183. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2):449–470. Miller, B. P. (2010). The effects of reporting complexity on small and large investor trading. The Accounting Review, 85(6):2107–2143. Norden, L. (2017). Information in cds spreads. Journal of Banking & Finance, 75:118– 135. Norden, L. and Weber, M. (2004). Informational efficiency of credit default swap and stock markets: The impact of credit rating announcements. Journal of Banking & Finance, 28(11):2813–2843. Orsenigo, C. and Vercellis, C. (2013). Linear versus nonlinear dimensionality reduction for banks’credit rating prediction. Knowledge-Based Systems, 47:14–22. Pedrosa, M. (1998). Systematic risk in corporate bond credit spreads. Journal of Fixed Income, 8(3):7–26. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P. J., et al. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67. Shapiro, A. H., Sudhof, M., and Wilson, D. J. (2020). Measuring news sentiment. Journal of Econometrics. Smales, L. A. (2016). News sentiment and bank credit risk. Journal of Empirical Finance, 38:37–61. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3):1139–1168. Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamentals. The journal of finance, 63(3):1437– 1467. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems, 32. |