English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51075671      Online Users : 939
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/141067
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141067


    Title: Black-Litterman 模型結合強化學習之投資組合配置
    Black-Litterman Portfolios with Reinforcement Learning Derived View
    Authors: 李雍群
    Li, Yung-Chun
    Contributors: 廖四郎
    Liao, Szu-Lang
    李雍群
    Li,Yung-Chun
    Keywords: 投資組合
    強化學習
    Black-Litterman模型
    近端策略優化
    Portfolio
    Reinforcement Learning
    Black-Litterman Model
    Proximal Policy Optimization
    Date: 2022
    Issue Date: 2022-08-01 17:30:18 (UTC+8)
    Abstract: 本研究嘗試將強化學習 (Reinforcement Learning) 應用於預測金融資產價格走勢,並結合Black-Litterman模型建構全球性多元投資組合。本研究使用近端策略優化演算法 (Proximal Policy Optimization, PPO),以資產價量資料預測資產價格漲跌及漲跌幅度,並將預測結果作為Black-Litterman模型中的投資者觀點進行資產配置,比較投資組合在不同獎勵設定及不同更新次數下的績效表現。本研究以美國五檔不同資產類別ETF作為基礎資產,研究結果顯示強化學習在一定更新次數上具有預測力,本研究建立之投資組合績效在更新次數600000皆能贏過其餘基準模型。另外,對於強化學習而言,以不同獎勵設定訓練模型比起增加更新次數對績效有著較大的影響。
    In this thesis, we try to apply reinforcement learning to forecasting price trends of finance assets. We combine the forecasts with the Black-litterman model and construct various globally diversified portfolios. In our paper, we use the Proximal Policy Optimization algorithm to forecast assets’ price trends by historical price and volume. The prediction of results are used as the investor’s views in the Black-Litterman model for asset allocation. This study compares the performance of the portfolios under different reward setting and number of updates. The empirical results show that reinforcement learning has predictive power at a certain number of updates. The portfolios performance in this study outperform the benchmark portfolios at 600,000 updates. In addition, for the reinforcement learning, training the model with different reward setting has a greater impact on performance than increasing the number of updates.
    Reference: [1] Black, F., & Litterman, R. (1991), “Asset Allocation: Combining Investor Views with Market Equilibrium.” The Journal of Fixed Income, 1(2), 7-18.
    [2] Black, F., & Litterman, R. (1992), “Global Portfolio Optimization.” Financial Analysts Journal, 48(5), 28-43.
    [3] Black, F., Jensen, M. C., & Scholes, M. (1972), “The Capital Asset Pricing Model: Some Empirical Tests.” In M. Jenson, ed., Studies in the Theory of Capital Markets (Praeger, New York, NY).
    [4] Donthireddy, P. (2018), “Black-Litterman Portfolios with Machine Learning derived Views.” ResearchGate. Retired April 12, 2022, from https://www.researchgate.net/publication/326489143_Black-Litterman_Portfolios_with_Machine_Learning_derived_Views
    [5] He, G., & Litterman, R. (2002), “The intuition behind Black-Litterman model portfolios.” Available at SSRN 334304.
    [6] Jiang, Z., & Liang, J. (2017, September), “Cryptocurrency Portfolio Management with Deep Reinforcement Learning.” In 2017 Intelligent Systems Conference (IntelliSys), 905-913, IEEE.
    [7] Lin, E., Chen, Q., & Qi, X. (2020), “Deep reinforcement learning for imbalanced classification.” Applied Intelligence, 50(8), 2488-2502.
    [8] Lintner, J. (1965), “Security Prices, Risk, and Maximal Gains from Diversification.” The Journal of Finance, 20(4), 587-615.
    [9] Markowitz, H.(1952), “Portfolio selection.” The Journal of Finance,7(1),77-91
    [10] Meucci, A. (2010), “The Black-Litterman Approach: Original Model and Extensions.” Shorter version in, The Encyclopedia Of Quantitative Finance, Wiley.
    [11] Moody, J., & Saffell, M. (2001), “Learning to Trade Via Direct Reinforcement.” IEEE transactions on neural Networks, 12(4), 875-889.
    [12] Neuneier, R. (1997), “Enhancing Q-Learning For Optimal Asset Allocation.” Advances In Neural Information Processing Systems, 10. 936-942
    [13] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017), “Proximal Policy Optimization Algorithms.” arXiv:1707.06347
    [14] Sharpe, W. F. (1964), “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk.” The journal of finance, 19(3), 425-442.
    [15] Treynor, J. L. (1961), “Market Value, Time, and Risk.” Available at SSRN 2600356.
    [16] Zhang, Y., Zhao, P., Li, B., Wu, Q., Huang, J., & Tan, M. (2020), “Cost-Sensitive Portfolio Selection Via Deep Reinforcement Learning.” IEEE Transactions on Knowledge and Data Engineering
    Description: 碩士
    國立政治大學
    金融學系
    109352028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109352028
    Data Type: thesis
    DOI: 10.6814/NCCU202200681
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202801.pdf1675KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback