English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51091938      Online Users : 943
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/141062
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141062


    Title: 結合 k-近鄰演算法模型解決 ESG 資料庫遺失值及其應用
    Using the k-Nearest Neighbor Model to Solve the Missing Value in the ESG Database and Its Application
    Authors: 呂學致
    Lu, Hsueh-Chih
    Contributors: 楊曉文
    Yang, Sheau-Wen
    呂學致
    Lu, Hsueh-Chih
    Keywords: ESG
    遺失值
    k-近鄰演算法
    績效回測
    ESG
    Missing value
    k-Nearest Neighbor
    Performance backtesting
    Date: 2022
    Issue Date: 2022-08-01 17:29:14 (UTC+8)
    Abstract: 由於解決 ESG 資料庫數據嚴重缺失的相關研究還並不多,因此本論文嘗試
    將著名的分類模型 k-近鄰演算法(k-Nearest Neighbor, kNN)應用在 ESG 領域中,使沒有完全揭露 ESG 項目的公司,能夠依據該產業其他公司的表現來預測其遺失的值,再透過改良的計算 ESG 分數的方法,利用加大給分差距來加強好和壞公司在 ESG 表現上的差異,使得計算出來公司的 ESG 分數能對報酬率具有顯著解釋能力,也期望可以有效地區分出好公司與壞公司的投資組合,使好公司投組擁有較佳的績效報酬。
    實證結果指出,本研究展現了在 Bloomberg 資料庫原始公司 ESG 數據有缺失的情況下,使用 kNN 模型來插補遺失值比沒有使用 kNN 模型直接忽略遺失值,以及增加計算 ESG 分數級距的研究方法,都能夠讓 ESG 因子對報酬率的解釋能力有顯著提升。除此之外在特定的 ESG 因子篩選條件中,好公司投組具有顯著超額報酬,其歷史回測績效表現更贏過壞公司投組,且報酬率波動度也都較小;但相對地,在某些因子下則呈現相反的情況。總結來說公司 ESG 的表現對報酬率的影響,並非是 E、S 和 G 三個因子佔有相等權重,從實證分析來看,在使用 kNN 模型使得公司有完整資料時,單注重 S 因子,與同時考慮 S&E 和 S&G的情況,會有較優異的報酬表現與較低的報酬波動度。
    Since there are not many studies to solve the serious lack of data of ESG database, this paper tries to apply the famous classification model k-Nearest Neighbor (kNN) to the ESG field, so that companies which do not fully disclose their ESG items can predict their missing values based on the performance of other companies in the same industry. Then the improvement of ESG score calculation method enhances the difference between the ESG performance of good and bad companies, so that the ESG scores of companies can have significant effect on the return rate, and is expected to identify the portfolio of ESG good and bad companies, then make ESG good portfolios have better performance returns.
    The empirical results show that in the case of missing ESG data of Bloomberg, the method using the kNN model to impute missing values and expanding the calculation range of ESG score can significantly improve the explanatory ability of ESG factors on company returns more than ignoring missing values without using the kNN model. In addition, under some specific ESG factor criteria, the portfolios of ESG good companies have significant excess returns and outperform the portfolios of ESG bad companies, and also have less volatility in returns; however, the opposite is true for some factors. In conclusion, the effect of ESG performance on return is not equal weighting of the E, S and G factors. From the empirical analysis, when the kNN model is used to make the ESG data of companies complete, focusing on the unique S factor, as opposed to considering both S&E and S&G, results in better return performance and lower return volatility.
    Reference: 1. Angel, J. J., & Rivoli, P. (1997). Does ethical investing impose a cost upon the firm? A theoretical perspective. The Journal of Investing, 6(4), 57-61.
    2. Berg, F., Fabisik, K., & Sautner, Z. (2020). Is history repeating itself? the (un) predictable past of esg ratings. The (Un) Predictable Past of ESG Ratings (August 24, 2021). European Corporate Governance Institute–Finance Working
    Paper, 708.
    3. Billio, M., Costola, M., Hristova, I., Latino, C., & Pelizzon, L. (2021). Inside the ESG Ratings:(Dis) agreement and performance. Corporate Social Responsibility and Environmental Management, 28(5), 1426-1445.
    4. Deng, Z., Zhu, X., Cheng, D., Zong, M., & Zhang, S. (2016). Efficient kNN classification algorithm for big data. Neurocomputing, 195, 143-148.
    5. Gray, R., Javad, M., Power, D. M., & Sinclair, C. D. (2001). Social and environmental disclosure and corporate characteristics: A research note and extension. Journal of business finance & accounting, 28(3‐4), 327-356.
    6. Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003, November). KNN modelbased approach in classification. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 986-996). Springer, Berlin, Heidelberg.
    7. Halbritter, G., & Dorfleitner, G. (2015). The wages of social responsibility —where are they? A critical review of ESG investing. Review of Financial Economics, 26, 25-35.
    8. Henriksson, R., Livnat, J., Pfeifer, P., & Stumpp, M. (2019). Integrating ESG in portfolio construction. The Journal of Portfolio Management, 45(4), 67-81.
    9. Khan, M., Serafeim, G., & Yoon, A. (2016). Corporate sustainability: First evidence on materiality. The accounting review, 91(6), 1697-1724.
    10. Kotsantonis, S., & Serafeim, G. (2019). Four things no one will tell you about ESG data. Journal of Applied Corporate Finance, 31(2), 50-58.
    11. McWilliams, A., & Siegel, D. (2000). Corporate social responsibility and financial performance: correlation or misspecification?. Strategic management journal, 21(5), 603-609.
    12. Ntiamoah, E. B. (2014). Corporate social responsibility awareness, firm commitment and organizational performance.
    13. OECD(2020), ESG Investing: Practices, Progress and Challenges, Retrieved December 26, 2020.
    14. Peloza, J. (2009). The challenge of measuring financial impacts from investments in corporate social performance. Journal of management, 35(6), 1518-1541.
    15. Preston, L. E., & O`bannon, D. P. (1997). The corporate social-financial performance relationship: A typology and analysis. Business & Society, 36(4), 419-429.
    16. Renneboog, L., Horst, J. T., & Zhang, C. (2008). Socially responsible investments: Institutional aspects, performance, and investor behavior. Journal of Banking & Finance, 32(9), 1723-1742.
    17. Sahin, Ö., Bax, K., Paterlini, S., & Czado, C. (2021). The pitfalls of (nondefinitive) environmental, social, and governance scoring methodology. Social, and Governance scoring methodology (January 28, 2022).
    18. Sauer, D. A. (1997). The impact of social-responsibility screens on investment performance: Evidence from the Domini 400 Social Index and Domini Equity Mutual Fund. Review of Financial Economics, 6(2), 137-149.
    19. Uddin, S., Haque, I., Lu, H., Moni, M. A., & Gide, E. (2022). Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Scientific Reports, 12(1), 1-11.
    20. Vallentin, S., & Spence, L. J. (2017). Strategic CSR: Ambitions and critiques. In Corporate social responsibility: Strategy, communication, governance (pp. 63-85). Cambridge University Press.
    21. Van de Velde, E., Vermeir, W., & Corten, F. (2005). Corporate social responsibility and financial performance. Corporate Governance: The international journal of business in society.
    22. Wang, L. (2019, December). Research and implementation of machine learning classifier based on KNN. In IOP Conference Series: Materials Science and Engineering (Vol. 677, No. 5, p. 052038). IOP Publishing.
    23. Yang,S. S.,Huang,J.W.,Chen,H.Y.,(2022),The Financial and Stock Performance: A Study of Material ESG SASB Factors. Can Disclosure or Materiality ESG information affect the assessment of the ESG Performance on Return and Risk?, Working paper.
    24. Yeganeh, Y. H., & Barzegar, G. (2014). The effect of disclosure level of corporate social responsibility (CSR) on corporate financial performance (CFP) in Tehran stock exchange. International Journal of Accounting Research, 1(11), 43-51.
    25. Yu, H. C., Kuo, L., & Kao, M. F. (2017). The relationship between CSR disclosure and competitive advantage. Sustainability Accounting, Management and Policy Journal.
    26. Zhang, S., Li, X., Zong, M., Zhu, X., & Wang, R. (2017). Efficient kNN classification with different numbers of nearest neighbors. IEEE transactions on neural networks and learning systems, 29(5), 1774-1785.
    27. 魏嘉慶. (2013). 以 kNN 為基礎之模糊類神經系統應用於時間序列預測 (Doctoral dissertation, 撰者)
    Description: 碩士
    國立政治大學
    金融學系
    109352019
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109352019
    Data Type: thesis
    DOI: 10.6814/NCCU202200719
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    201901.pdf3900KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback