Reference: | [1] Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. [2] Black, F., & Litterman, R. (1991). Asset allocation: combining investor views with market equilibrium. The Journal of Fixed Income, 1(2), 7-18. [3] Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. [4] Donthireddy, P. (2018, July 19). Black-Litterman portfolio with machine learning derived views. ResearchGate. Retrieved September 22, 2019, from https://www.researchgate.net/publication/326489143_Black-Litterman_Portfolios_with_Machine_Learning_derived_Views. [5] Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2017). “Deep direct reinforcement learning for financial signal representation and trading.” IEEE transactions on neural networks and learning systems 28.3: 653-664. [6] Hoseinzade, E., & Haratizadeh, S. (2018). CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 129, 273-285. [7] He, G., & Litterman, R. (1999). The intuition behind Black-Litterman model portfolios. New York, NY: Goldman Sachs. [8] Idzorek, T. (2004). A step-by-step guide to the Black-Litterman model, incorporating user specified confidence levels. Chicago, IL:Ibbotson Associates. [9] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541-551. [10] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. [11] Moody, J., Wu, L., Liao, Y. & Saffell, M. (1998). Performance functions and reinforcement learning for trading systems and portfolios. Journal of Forecasting, 17(5-6), 441-470. [12] Neuneier, R. (1998). Enhancing Q-learning for optimal asset allocation. In Advances in neural information processing systems (pp. 936-942). [13] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347. [14] Thawornwong, S., Enke, D., & Dagli, C. (2003). Neural networks as a decision maker for stock trading: a technical analysis approach. International Journal of Smart Engineering System Design, 5(4), 313-325. |