Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/141041
|
Title: | 以硬體錢包實作以太坊相容區塊鏈之交易 Compose Transactions for Ethereum-Compatible Blockchains Using Hardware Wallets |
Authors: | 簡佑臻 Chien, Yu-Jen |
Contributors: | 陳恭 Chen, Kung 簡佑臻 Chien, Yu-Jen |
Keywords: | 區塊鏈 硬體錢包 冷錢包 以太坊兼容鏈 Ethereum-compatible blockchains Hardware wallets Cold wallets |
Date: | 2022 |
Issue Date: | 2022-08-01 17:23:40 (UTC+8) |
Abstract: | 近年來加密貨幣交易興起,各大知名的加密貨幣交易所,如Binance、FTX與Coinbase等,都透過提供簡易操作的加密貨幣錢包與多樣化服務,吸引加密貨幣持有者的使用,但這些便利性是透過交易所代管客戶加密貨幣的私鑰而達到的;一旦交易所遭到駭客入侵,取得其代管的客戶私鑰,將為客戶帶來重大的損失。為了防範此種問題,越來越多使用者開始採用熱錢包 (Hot wallet) 與冷錢包 (Cold wallet) ,其中以冷錢包提供的服務更具有安全保障。 冷錢包,又稱硬體錢包,其功能是將加密貨幣帳戶的私鑰透過離線的硬體環境產生與儲存,降低其遭到駭客盜取私鑰的風險。因此,針對不同鏈的不同幣種,硬體錢包需要支援該幣種的交易格式、雜湊函數與數位簽章演算法,否則無法產出該筆交易之簽章。為加速硬體錢包支援新幣種的速度,本研究認為可以透過實作出以太坊兼容鏈的交易,提高實作效率。首先,本研究藉由庫幣科技提供之硬體錢包實作出以太坊兼容鏈的Avalanche C-Chain交易。其次,透過抽離出其與以太坊交易之相異處後,發展以太坊兼容鏈架構,據以實作出Aurora與Klaytn之交易,並比較新舊方法之流程上差異。在以太坊相容架構下,未來只需要兩個步驟就能使硬體錢包支援新鏈之交易,相較於目前的方法,可大幅縮短實作上的流程。 The cryptocurrency trading has gone viral in recent years. Major well-known cryptocurrency exchanges, such as Binance, FTX and Coinbase, have attracted cryptocurrency holders by providing easy-to-use cryptocurrency wallets and diversified services. However, such convenient services are achieved by hosting the private key of the client’s cryptocurrency wallet. Once the exchange is hacked and breached, the hackers obtain the customers’ private keys, bringing heavy losses to the customers. In order to prevent such problems, more and more users have begun to embrace hot wallets and cold wallets, among which the latter are considered to be more secure. A cold wallet, also known as a hardware wallet, is a device for offline storage of private keys. It generates and stores the private keys of cryptocurrency wallets through an offline hardware environment, reducing the risk of hackers stealing the private keys. Therefore, for different currencies of different blockchains, the hardware wallet needs to support the transaction format of the currency, such as the hash function and digital signature algorithm used, otherwise the signature of the transaction cannot be generated. In order to accelerate the speed of hardware wallets supporting new currencies, this study believes that the efficiency of implementation can be improved by implementing transactions on the Ethereum-compatible chains. First of all, this study uses the hardware wallet provided by CoolBitX to implement the transactions of Avalanche C-Chain, an Ethereum-compatible chain. After extracting the differences between Avalanche C-Chain and Ethereum transactions, we develop the Ethereum compatible chain structure, according to which the transactions on Aurora and Klaytn are implemented, and the process difference between the old and new method is compared. Under the Ethereum-compatible architecture, only two steps are needed in the future to enable the hardware wallet to support transactions on the new chain. Compared with the current method, the implementation process is greatly shortened. |
Reference: | Aung, Y. N., & Tantidham, T. (2017). Review of Ethereum: Smart home case study. 2017 2nd International Conference on Information Technology (INCIT), Ava Labs. (2021). Avalanche Blockchain Consensus. Retrieved April 6, 2022 from https://docs.avax.network/learn/platform-overview/avalanche-consensus/#dags-directed-acyclic-graphs Bamert, T., Decker, C., Wattenhofer, R., & Welten, S. (2014). Bluewallet: The secure bitcoin wallet. International Workshop on Security and Trust Management, Barber, S., Boyen, X., Shi, E., & Uzun, E. (2012). Bitter to Better — How to Make Bitcoin a Better Currency. In A. D. Keromytis, Financial Cryptography and Data Security Berlin, Heidelberg. Bartoletti, M., & Pompianu, L. (2017). An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design Patterns. In M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, & M. Jakobsson, Financial Cryptography and Data Security Cham. Bogner, A., Chanson, M., & Meeuw, A. (2016). A decentralised sharing app running a smart contract on the ethereum blockchain. Proceedings of the 6th International Conference on the Internet of Things, Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white paper, 3(37). Buterin, V. (2016). EIP-155: Simple replay attack protection. Ethereum Improvement Proposals, no. 155. Retrieved May 2, 2022 from https://eips.ethereum.org/EIPS/eip-155 Chainlist.org. (n.d.). Chainlists. Retrieved April 10, 2022 from https://chainlist.org/zh Charoenwong, B., & Bernardi, M. (2022). A Decade of Cryptocurrency ‘Hacks’: 2011 – 2021. Available at SSRN: https://ssrn.com/abstract=3944435 or http://dx.doi.org/10.2139/ssrn.3944435 Defi Llama. (n.d.). Total Value Locked All Chains. Retrieved March 20, 2022 from https://defillama.com/chains Ethereum Wiki. (n.d.). RLP. Retrieved April 9, 2022 from https://eth.wiki/fundamentals/rlp Gentilal, M., Martins, P., & Sousa, L. (2017). TrustZone-backed bitcoin wallet. Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems, Hiltgen, A., Kramp, T., & Weigold, T. (2006). Secure internet banking authentication. IEEE security & privacy, 4(2), 21-29. Jakobsson, M., & Juels, A. (1999). Proofs of work and bread pudding protocols. In Secure information networks (pp. 258-272). Springer. Lamport, L., Shostak, R., & Pease, M. (2019). The Byzantine generals problem. In Concurrency: the Works of Leslie Lamport (pp. 203-226). Lazarenko, A., & Avdoshin, S. (2019). Financial Risks of the Blockchain Industry: A Survey of Cyberattacks. In K. Arai, R. Bhatia, & S. Kapoor, Proceedings of the Future Technologies Conference (FTC) 2018 Cham. Lim, I.-K., Kim, Y.-H., Lee, J.-G., Lee, J.-P., Nam-Gung, H., & Lee, J.-K. (2014). The analysis and countermeasures on security breach of bitcoin. International conference on computational science and its applications, McCorry, P., Möser, M., & Ali, S. T. (2018). Why Preventing a Cryptocurrency Exchange Heist Isn’t Good Enough. In V. Matyáš, P. Švenda, F. Stajano, B. Christianson, & J. Anderson, Security Protocols XXVI Cham. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260. Palatinus, M., & Rusnak, P. (2014). Multi-Account Hierarchy for Deterministic Wallets. Retrieved Jun 10, 2022 from https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki Poulsen, K. (2011). New Malware Steals Your Bitcoin. Retrieved March 20, 2022 from https://www.wired.com/2011/06/bitcoin-malware/ Rezaeighaleh, H., & Zou, C. C. (2020). Efficient Off-Chain Transaction to Avoid Inaccessible Coins in Cryptocurrencies. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Rusnak, P., & Palatinus, M. (2014). SLIP-0044 : Registered coin types for BIP-0044. Retrieved May 23, 2022 from https://github.com/satoshilabs/slips/blob/master/slip-0044.md Szabo, N. (1997). Formalizing and securing relationships on public networks. First monday. TheBlockCrypto. (2022). Cryptocurrency Exchange Volume. Retrieved March 20, 2022 from https://www.theblockcrypto.com/data/crypto-markets/spot/cryptocurrency-exchange-volume-monthly Tidy, J. (2021). 數字貨幣市場上遭黑客攻擊的受害者. Retrieved May 23, 2022 from https://www.bbc.com/zhongwen/trad/business-58341055 Vogelsteller, F., & Buterin, V. (2015). EIP-20: Token Standard. Retrieved May 10, 2022 from https://eips.ethereum.org/EIPS/eip-20 Wood, G. (2022). ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER. Retrieved May 29, 2022 from https://ethereum.github.io/yellowpaper/paper.pdf Wuille, P. (2012). Hierarchical Deterministic Wallets. Retrieved June 10, 2022 from https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki Yavuz, E., Koç, A. K., Çabuk, U. C., & Dalkılıç, G. (2018). Towards secure e-voting using ethereum blockchain. 2018 6th International Symposium on Digital Forensic and Security (ISDFS), |
Description: | 碩士 國立政治大學 資訊管理學系 109356032 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109356032 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202201030 |
Appears in Collections: | [Department of MIS] Theses
|
Files in This Item:
File |
Description |
Size | Format | |
603201.pdf | | 6347Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|