English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113393/144380 (79%)
Visitors : 51235853      Online Users : 923
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/141022
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141022


    Title: 應用樹狀演算法預測高頻數據下的波動度-以台灣股票市場為例
    Forecasting Volatility under High Frequency Data with Tree-based Algorithm:Evidence from the Taiwan Stock Market
    Authors: 范姜峻浩
    Fan Jiang, Jun-Hao
    Contributors: 岳夢蘭
    Yueh, Meng-Lan
    范姜峻浩
    Fan Jiang, Jun-Hao
    Keywords: 真實波動度
    HAR-RV模型
    波動度預測
    機器學習
    決策樹
    隨機森林
    Realized Volatility
    HAR-RV Model
    Volatility Forecasting
    Machine Learning
    Decision Tree
    Random Forest
    Date: 2022
    Issue Date: 2022-08-01 17:19:02 (UTC+8)
    Abstract: 本篇論文使用5分鐘高頻資料所計算的真實波動度來當作市場波動度的衡量,以HAR-RV (Corsi, 2009)模型及其衍生模型為架構,應用機器學習技術中的樹狀演算法,預測台灣股市中三個指數的波動度,探討是否能透過捕捉變數間的非線性關係來改善線性模型的樣本外預測表現。除了真實波動度值的預測外,我們也關心波動度方向的準確度,提出使用樹狀演算法來預測未來波動度變大或變小兩種情況的分類模型。我們的結果顯示,隨機森林演算法在大多數的情況都能取得良好於其他模型的預測表現,在所有時間水平的預測下皆取得了較低的RMSE (Root Mean Square Error)及MAE (Mean Absolute Error),大部分的情況下也有較低的MAPE (Mean Absolute Percentage Error),Diebold-Mariano檢定結果也顯示隨機森林演算法有顯著優於線性模型的預測誤差,表示透過非線性的樹狀演算法進行模型擬合確實能夠提高預測表現。此外,研究結果也發現我們的模型在預測電子類指數之波動度時表現較佳,獲得相較於其他兩個指數更低的MAPE,並且在方向的預測上也有較高的準確度 (Accuracy)及精確度 (Precision)。
    This paper provides an evaluation of forecasting performance of the realized volatility calculated with 5-minute frequency data. Based on HAR-RV (Corsi, 2009) series model, Tree-based algorithms, the machine learning approach, were used to predict the realized volatility of three indices in the Taiwan stock market. In the comparison with linear regression model, we investigated whether the predictive performance in out-of-samples can be improved by tree-based algorithms which could easily capture non-linear relationships between variables. In addition to forecasting the value of realized volatility, we also considered the accuracy of the realized volatility direction, and propose a classification model that applied tree-based algorithms to predict the volatility directions, up and down. Our result showed that the random forest algorithm could achieve better predictive performance than other models in most cases. Lower RMSE and MAE at all time horizons of prediction were gained, and in most cases, there were also lower MAPE. The results of the Diebold-Mariano test also showed that the random forest had a significantly better predictive error than the linear model indicating that models fitted with non-linear tree-based algorithms could indeed improve the predictive performance. Furthermore, we also found that our model performed better in forecasting the volatility of the Taiwan Electronics Index, which obtained lower MAPE than the other two indices, and also had a higher accuracy and precision in the direction prediction.
    Reference: [1] Andersen, T. G., & Bollerslev, T. (1998). Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts. International Economic Review, 39(4), 885–905.
    [2] Andersen, T.G., Bollerslev, T., Diebold, F.X. & Labys, P. (2003). Modeling and Forecasting Realized Volatility. Econometrica, 71, 579-625.
    [3] Andersen , T.G. & Teräsvirta, T. (2009). Realized Volatility. In: Mikosch, T., Kreiß, JP., Davis, R., Andersen, T. (eds) Handbook of Financial Time Series. Springer, Berlin, Heidelberg.
    [4] Andersen, T.G., Bollerslev, T. & Diebold, F.X. (2007). Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility. The Review of Economics and Statistics, 89 (4), 701–720.
    [5] Barndorff-Nielsen, O.E., Shephard, N. (2004). Power and Bipower Variation with Stochastic Volatility and Jumps, Journal of Financial Econometrics, Volume 2, Issue 1 , 1–37.
    [6] Barndorff-Nielsen, O.E., Kinnebrock, S. & Shephard, N. (2008). Measuring Downside Risk - Realised Semivariance. CREATES Research Paper, No. 2008-42
    [7] Breiman, L. (2001). Random Forests. Machine Learning 45, 5–32.
    [8] Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression Trees (1st ed.). Routledge.
    [9] Browne, M.W. (2000), Cross-Validation Methods, Journal of Mathematical Psychology, Volume 44, Issue 1, 108-132.
    [10] Bouri, E., Gkillas, K., Gupta, R., & Pierdzioch, C. (2021). Forecasting realized volatility of bitcoin: The role of the trade war. Computational Economics, 57(1), 29-53.
    [11] Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.
    [12] Christensen, K., Siggaard, M., & Veliyev, B. (2021). A machine learning approach to volatility forecasting. Available at SSRN.
    [13] Christoffersen, P. F., & Diebold, F. X. (2006). Financial asset returns, direction-of-change forecasting, and volatility dynamics. Management Science, 52(8), 1273-1287.
    [14] Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174-196.
    [15] Corsi, F., & Renò, R. (2012). Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling. Journal of Business & Economic Statistics, 30(3), 368-380.
    [16] Degiannakis, S., & Filis, G. (2017). Forecasting oil price realized volatility using information channels from other asset classes. Journal of International Money and Finance, 76, 28-49.
    [17] De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
    [18] Engle R.F., Patton A.J. (2007), 2 - What good is a volatility model?*, Editor(s): John Knight, Stephen Satchell, In Quantitative Finance, Forecasting Volatility in the Financial Markets (Third Edition), Butterworth-Heinemann, 47-63.
    [19] Franses, P.H. & Van Dijk, D. (1996). Forecasting stock market volatility using (non-linear) Garch models. J. Forecast., 15: 229-235.
    [20] Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3), 299-310.
    [21] Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
    [22] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
    [23] Liu, L. Y., Patton, A. J., & Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics, 187(1), 293-311.
    [24] Liu, L., & Zhang, T. (2015). Economic policy uncertainty and stock market volatility. Finance Research Letters, 15, 99-105.
    [25] Luong, C., & Dokuchaev, N. (2018). Forecasting of realised volatility with the random forests algorithm. Journal of Risk and Financial Management, 11(4), 61.
    [26] McAleer, M., & Medeiros, M. C. (2008). Realized volatility: A review. Econometric reviews, 27(1-3), 10-45.
    [27] Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A. and Brown, S.D. (2004). An introduction to decision tree modeling. J. Chemometrics, 18: 275-285.
    [28] Patton , A.J. & Sheppard K. (2015). Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility. The Review of Economics and Statistics; 97 (3), 683–697.
    [29] Peng, Y., Albuquerque, P. H. M., de Sá, J. M. C., Padula, A. J. A., & Montenegro, M. R. (2018). The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Systems with Applications, 97, 177-192.
    [30] Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.
    [31] Trevor Hastie, Jerome Friedman, Robert Tibshirani (2001). The Elements of Statistical Learning: data mining, inference, and prediction. Springer New York, NY
    [32] Wen, F., Gong, X., & Cai, S. (2016). Forecasting the volatility of crude oil futures using HAR-type models with structural breaks. Energy Economics, 59, 400-413.
    [33] Zhou, Y., Li, T., Shi, J., & Qian, Z. (2019). A CEEMDAN and XGBOOST-based approach to forecast crude oil prices. Complexity, 201
    Description: 碩士
    國立政治大學
    財務管理學系
    109357020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109357020
    Data Type: thesis
    DOI: 10.6814/NCCU202200887
    Appears in Collections:[財務管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    702001.pdf4722KbAdobe PDF219View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback