English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804720      Online Users : 839
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/141006
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141006


    Title: 帶有錯誤分類與測量誤差數據的高維度變數選取與估計
    Variable selection and estimation for misclassified responses and high-dimensional error-prone predictors
    Authors: 歐陽沁縈
    Ou Yang, Qin-Ying
    Contributors: 陳立榜
    Chen, Li-Pang
    歐陽沁縈
    Ou Yang, Qin-Ying
    Keywords: 二元分類資料
    boosting
    誤差校正
    測量誤差
    回歸模型校正
    binary data
    boosting
    error elimination
    measurement error
    regression calibration
    Date: 2022
    Issue Date: 2022-08-01 17:15:25 (UTC+8)
    Abstract: 二元分類一直是統計分析或監督式學習中值得被討論的內容。在建立二元結果與變數的模型選擇上,logistic 與 probit 的模型是較常被使用的。然而,在資料維度遽增以及不可忽視的測量誤差存在測量結果、變數當中,過去的傳統方法已不適用,這為我們在資料分析上帶來了重大的挑戰。為了解決上述的問題,我們提出有效的推論方法處理測量誤差並同時進行變數選取。具體來說,我們首先考慮 logistic 或 probit 的模型,將經過校正的應變數與自變數放入我們的估計函數中。接著,我們透過 boosting 方法去做變數選取並計算參數的估計值。在數值研究當中,我們所提出的方法能夠準確地保留重要變數且能精準地計算出估計參數。此外,經過誤差校正的結果在整體的分析表現上是顯著優於沒有校正的結果。
    Binary classification has been an attractive topic in statistical analysis or supervised learning. To model a binary response and predictors, logistic regression models or probit models are perhaps commonly used approaches. However, because of the rapid growth of the dimension of the data as well as the non ignorability of measurement error in responses and/or predictors, data analysis becomes challenging and conventional methods are invalid. To address those concerns, we propose a valid inferential method to deal with measurement error and handle variable selection simultaneously. Specifically, we primarily consider logistic regression models or probit models, and propose corrected estimating functions by incorporating error-eliminated responses and predictors. After that, we develop the boosting procedure with corrected estimating functions accommodated to do variable selection and estimation.Through numerical studies, we find that the proposed method accurately retains informative predictors as well as gives precise estimators, and its performance is generally better than that without measurement error correction.
    Reference: Brown, B., Miller, C. J., and Wolfson, J. (2017). ThrEEBoost: Thresholded boosting for variable selection and prediction via estimating equations. Journal of Computational and Graphical Statistics, 26, 579-588.

    Brown, B., Weaver, T., and Wolfson, J. (2019). MEBoost: Variable selection in the presence of measurement error. Statistics in Medicine, 38, 2705-2718.

    Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Model. Chapman and Hall.

    Carroll, R. J., Spiegelman, C. H., Gordon Lan, K. K., Bailey, K. T., and Abbott, R. D. (1984). On errors-in-variables for binary regression models. Biometrika, 71, 19-25.

    Chen, L.-P. (2020). Variable selection and estimation for the additive hazards model subject to left-truncation, right-censoring and measurement error in covariates. Journal of Statistical Computation and Simulation, 90, 3261-3300.

    Chen, L.-P. and Yi, G. Y. (2020). Model selection and model averaging for analysis of truncated and censored data with measurement error. Electronic Journal of Statistics, 14, 4054–4109.

    Chen, L.-P. and Yi, G. Y. (2021a). Analysis of noisy survival data with graphical proportional hazards measurement error models. Biometrics, 77, 956–969.

    Chen, L.-P. and Yi, G. Y. (2021b). Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error. Annals of the Institute of Statistical Mathematics, 73, 481–517.

    Chen, L.-P. and Yang, S.-F. (2022). A new p-chart with measurement error correction. arXiv:2203.03384.

    Hastie, T., Tibshironi, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalization. CRC Press, Boca Raton, FL.

    Laitinen, E. K., and Laitinen, T. (1997). Misclassification in bankruptcy prediction in Finland: human information processing approach. Accounting, Auditing & Accountability Journal, 11, 216-244.

    Liang, D., Lu, C. C., Tsai, C. F., and Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 16, 561-572.

    Ma, Y. and Li, R. (2010). Variable selection in measurement error models. Bernoulli, 16, 273-300.

    Marquardt, D. W. and Snee, R. D. (1975). Ridge regression in practice. The American Statistician, 29, 3-20.

    McGlothlin, A., Stamey, J. D., and Seaman, J. W. (2008). Binary regression with misclassified response and covariate subject to measurement error: a bayesian approach. Biometrika, 50, 123-134.

    Nanda, S. and Pendharkar, P. (2001). Linear models for minimizing misclassification costs in bankruptcy prediction. International Journal of Intelligent Systems in Accounting, Finance & Management, 10, 155–168.

    Reeves, G. K., Cox, D. R., Darry, S. C., and Whitley, E. (1998). Some aspects of measurement error in explanatory variables for continuous and binary regression models. Statistics in Medicine, 17, 2157-2177.

    Roy, S., Banerjee, T., and Maiti, T. (2005). Measurement error model for misclassified binary responses. Statistics in Medicine, 24, 269-283.

    Schafer, D. W. (1993). Analysis for probit regression with measurement errors. Biometrika, 80, 899-904.

    Shao, J. (2003). Mathematical Statistics. Springer, New York.

    Sørensen, Ø., Frigessi, A., and Thoresen, M. (2015). Measurement error in lasso: impact and likelihood bias correction. Statistica Sinica, 25, 809-829.

    Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for generalized linear measurement error models. Biometrika, 74, 703-716.

    Wolfson, J. (2011). EEBOOST: a general method for prediction and variable selection based on estimating equation. Journal of the American Statistical Association, 106, 296-305.

    Yi, G. Y. (2017). Statistical Analysis With Measurement Error and Misclassication: Strategy, Method and Application. New York: Springer.

    Zhang, T. and Yu, B. (2005). Boosting with early stopping: convergence and consistency. The Annals of Statistics , 33, 1538-1579.

    Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67, 301-320.
    Description: 碩士
    國立政治大學
    統計學系
    109354014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109354014
    Data Type: thesis
    DOI: 10.6814/NCCU202200889
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401401.pdf1475KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback