English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51103776      Online Users : 922
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/141004
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141004


    Title: 線性迴歸模型的隨機梯度下降估計之漸近分析
    Asymptotic Analysis of Stochastic Gradient-Based Estimators for Linear Regression Models
    Authors: 李承志
    Li, Cheng-Jhih
    Contributors: 翁久幸
    Weng, Chiu-Hsing
    李承志
    Li, Cheng-Jhih
    Keywords: 隨機梯度下降法
    平均隨機梯度下降法
    線性迴歸模型
    漸進分析
    學習率
    維度
    Stochastic Gradient Descent
    Averaged Stochastic Gradient Descent
    Linear Regression
    Asymptotic Analysis
    Learning Rate
    Dimensionality
    Date: 2022
    Issue Date: 2022-08-01 17:14:56 (UTC+8)
    Abstract: 隨機梯度下降法 (Stochastic Gradient Descent; SGD) 是一個常見的最佳化問題解決方法。因為在計算上只需要使用到損失函數的一階微分,梯度下降法有很好的計算效率。然而,當學習率中的比例常數設置不當時,SGD 將變得不穩定。因此,選擇合適的學習率是梯度下降更新中一個重要的課題。

    另一種與 SGD 相關的演算法是平均梯度下降法 (Averaged Stochastic Gradient Descent; ASGD) 。ASGD 是在每次的 SGD 迭代之後增加一個平均步驟。當 ASGD 所使用的學習率遞減速度不低於 t^{−1},此方法被證明是漸進有效的。但事實上 ASGD 遭遇到一些問題,包含: (i) 由於平均的速度緩慢或學習率不當,ASGD 需要大量的樣本 (ii) 在高維度的問題中較不穩定。在這篇論文中,我們從理論和模擬兩個方面研究在線性迴歸模型中 SGD 和 ASGD 的漸近性質。雖然我們發現 ASGD 在某些情況下比 SGD 更敏感,但是藉由謹慎的學習率選擇可以改善結果。此外,增加訓練樣本也提升 ASGD 的表現。
    Stochastic Gradient Descent (SGD) is a common solution for optimization problem. It is computationally efficient because the algorithm only relies on the first derivative of the loss function. However, it is known that SGD is lack of robustness due to the improper setting of proportionality constant. Therefore, choosing an appropriate learning rate is an important issue for SGD update.

    Another SGD-related algorithm is the Averaged Stochastic Gradient Descent (ASGD). It adds an averaging step after standard SGD procedure in every iteration. By using the
    learning rate not decreasing slower than t^{−1}, it is proved to be asymptotically efficient. But in practice, ASGD encounters some problems: (i) it requires large samples because of slow averaging or improper learning rate, (ii) it is unstable to high dimensionality. In this thesis, we study asymptotic properties of SGD and ASGD for linear regression models in both theory and simulation. We find that though ASGD is more sensitive to SGD in some situations, and a careful choice of learning rate could improve the results.
    Moreover, increasing training samples also improves the performances for ASGD.
    Reference: Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

    Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436. Springer, 2012.

    Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for largescale machine learning. Siam Review, 60(2):223–311, 2018.

    Alexandre Défossez and Francis Bach. Averaged least-mean-squares: Bias-variance trade-offs and optimal sampling distributions. In Artificial Intelligence and Statistics, pages 205–213. PMLR, 2015.

    Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, pages 462–466, 1952.

    Harold J. (Harold Joseph) Kushner. Stochastic approximation and recursive algorithms and applications Harold J. Kushner, G. George Yin. Applications of mathematics ; 35. Springer, New York, 2003.

    Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. Advances in neural information processing systems, 24, 2011.

    Noboru Murata. A statistical study of on-line learning. Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, pages 63–92, 1998.

    Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

    Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media, 2003.

    Boris T Polyak. New stochastic approximation type procedures. Automat. i Telemekh, 7(98-107):2, 1990.

    Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM journal on control and optimization, 30(4):838–855, 1992.

    Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.

    Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.

    David Ruppert. Efficient estimators from a slowly convergent Robbins-Monro procedure. School of Oper. Res. and Ind. Eng., Cornell Univ., Ithaca, NY, Tech. Rep, 781, 1988.

    Panos Toulis and Edoardo M Airoldi. Asymptotic and finite-sample properties of estimators based on stochastic gradients. The Annals of Statistics, 45(4):1694–1727, 2017.

    Wei Xu. Towards optimal one pass large scale learning with averaged stochastic gradient descent. arXiv preprint arXiv:1107.2490, 2011.
    Description: 碩士
    國立政治大學
    統計學系
    109354005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109354005
    Data Type: thesis
    DOI: 10.6814/NCCU202201003
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400501.pdf8618KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback