English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50971426      Online Users : 908
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 會計學系 > 學位論文 >  Item 140.119/140981
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140981


    Title: 智慧製造與作業價值管理(AVM)結合對管理決策之影響
    The Impacts of Integrating Intelligent Manufacturing and Activity Value Management on Decision Making
    Authors: 張家茜
    Chang, Chia-Chien
    Contributors: 吳安妮
    Wu, Anne
    張家茜
    Chang, Chia-Chien
    Keywords: 工業4.0
    智慧製造
    作業價值管理
    管理決策
    Industry 4.0
    Intelligent manufacturing,
    Activity Value Management
    Management decision
    Date: 2022
    Issue Date: 2022-08-01 17:06:23 (UTC+8)
    Abstract: 本研究之目的為探討工業4.0環境下,台灣中小型製造業進行數位轉型的具體方法以及其對工廠管理的效益。本研究採用個案研究法,以國內某端子台製造商為研究對象,透過導入智慧製造即時成本管理系統,將工業物聯網結合作業價值管理制(AVM),除了即時的工單成本資訊之外,亦提供六大管理日報表,以整合因果關係之成本資訊協助資料導向決策的執行,同時解決智慧製造的管理問題。
    研究結果發現:導入本系統能夠有效地管理工單成本,且透過品質及產能屬性成本之分析,進一步追蹤內部失敗作業成本及無生產力作業成本發生的原因,以便管理者採取相對應之改善措施,俾提升產品品質及工廠生產力。此外,本系統之成本資訊可作為管理者從事十項管理決策的基礎,強化決策之精準度進而提升企業經營績效。
    The purpose of this study is to explore an effective method of digital transformation in Taiwan`s small and medium-sized manufacturing industry and its benefits to factory management under Industry 4.0. This research adopts the case study method and takes a connector manufacturer in Taiwan as a research object. It integrates the Industrial Internet of Things (IIoT) and Activity Value Management System (AVMS) by introducing the Intelligent Cost System (ICS). ICS provides not only real-time cost information but also insightful management reports for the managers to make better decisions and to solve all kinds of product line challenges.
    The research results reveal two important findings. First, the introduction of ICS manages costs effectively. Besides, the productivity cost analysis sheet enables managers to find out the possible reason for productive inefficiency, so that they might take further actions to improve product quality and factory productivity. Second, the information provided by ICS serves as the basis for strategic business decisions. Therefore, it strengthens the accuracy of decision-making and enhances business performance.
    Reference: 1.中文部分:
    吳安妮,2001,作業制成本制度(ABC)在管理決策上之效益,會計研究月刊,第182期:59-63。
    吳安妮,2015,管理會計技術商品化:以ABC為核心之作業價值管理系統(AVMS)為例,會計研究月刊,第359期:20-24。
    吳安妮,2019,企業策略的終極答案,用「作業價值管理AVM」破除成本迷思,掌握正確因果資訊,作對決策賺到「管理財」,台北:臉譜出版。
    朱靜慧,2016,電子連接器產業通訊月刊,第134期:16-20。
    李亦晴等,2020,智慧製造與機器人應用發展趨勢,台北:財團法人資訊工業策進會產業情報研究所。
    林上育,2017,工業4.0與作業價值管理(AVM)之結合,國立政治大學會計學系碩士論文。
    洪哲倫,2020,智慧製造的關鍵角色:工業大數據分析,機械工業雜誌,第444期:40-44。
    莊鎮遠,2021,智慧製造與作業價值管理(AVM)的結合—以A公司為例,國立政治大學會計學系碩士論文。
    張曙,2014,工業4.0和智能製造,機械設計與製造工程,第43卷第8期:31-35。
    麥斯.貝澤曼與唐.摩爾,2019,精準決策:哈佛商學院教你繞開大腦的偏誤,不出錯的做出好判斷,洪士美譯,台北:樂金文化。
    楊朝旭,2006,智慧資本、價值創造與企業績效關聯性之研究,中山管理評論,第14卷第1期:43-78。
    羅伯特.尹,2001,個案研究法,尚榮安譯,台北:弘智文化。
    產業價值鏈資訊平台,2021,連接器產業鏈簡介,https://ic.tpex.org.tw/introduce.php?ic=K000&stk_code=1617,擷取日期:2022年5月3日。
    2.英文部分:
    Brynjolfsson E., L. M. Hitt , and H. H. Kim. 2011. Strength in numbers: how does data-driven decision making affect firm performance? Working paper, Massachusetts Institute of Technology(MIT) and University of Pennsylvania.
    Bortolini, M., E. Ferrari, M. Gamberi, F. Pilati, and M. Faccio. 2017. Assembly system design in the industry 4.0 era: A general framework. IFAC-PapersOnLine,50(1): 100-105.
    Bazerman, M. H. and D. A. Moore. 2012. Judgment in managerial decision making. New Jersey: John Wiley & Sons Inc.
    Bousdekis A., K. Lepenioti, D. Apostolou, and G. Mentzas. A review of data-driven decision-making methods for Industry 4.0 maintenance applications. Electronics, 10(7):828.
    Cooper, R. and R. S. Kaplan. 1991. Profit priorities from activity-based costing.Harvard Business Review, 69(3):130-135.
    Collins, J. C. and W.C. Lazier. 2020. Beyond entrepreneurship 2.0: Turning your business into an enduring great company. London: Penguin Books.
    Drucker, P. F. 1995. The information executives truly need. Harvard Business Review,73(1):54-62.
    Kahneman, D. 2013. Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.
    Lee, M. X., Y. C. Lee, and C. J. Chou. 2017. Essential implications of the digital
    transformation in industry 4.0, 76(8): 465-467.
    Ness, A., and T. G. Cucuzza. 1995. Tapping the full potential of ABC. Harvard
    Business Review,73(4):130-138.
    Obitko, M., and V. Jirkovsky. 2015. Big data semantics in industry 4.0. In
    international conference on industrial applications of holonic and multi-agent
    systems: 217-229.
    Posada, J. and C. Toro. 2015. Visual computing as a key enabling technology for
    industry 4.0 and industrial internet. IEEE Computer Graphics and Applications,
    35(2): 26-40.
    Provost, F. and T. Fawcett. 2013. Data science and its relationship to big data and
    data-driven decision making. Big Data, 1(1):51-58.
    Roblek, V., M. Mesko, and A. Krapez. 2016. A complex view of industry 4.0. Sage
    Open, 6(2) :1-11.
    Schiff, B. 1992. How to succeed at activity-based costing management. Management
    Accounting, 73(9):64-66.
    Shan, Siqing; Wen, Xin; Wei, Yigang; Wang, Zijin; Chen, Yong. 2020. Intelligent
    manufacturing in industry 4.0: A case study of Sany Heavy Industry. Systems
    Research & Behavioral Science, 37(4) :679-690.
    Schmidt, R., Mohring, M., Harting, R. C., Reichstein, C., Neumaier, P., and Jozinovic,
    P. 2015. Industry 4.0— Potentials for creating smart products: empirical research
    results. In International Conference on Business Information Systems :16-27.
    Sanchez, M., E. Exposito, and J. Aguilar. 2020. Industry 4.0: Survey from a system
    integration perspective. International Journal of Computer Integrated
    Manufacturing, 33(10):17-41.
    Stewart, T. A. 1997. Intellectual capital: The new wealth of organizations. New York,
    NY: Bantam Doubleday Dell.
    Sibony, O. 2020. You’re about to make a terrible mistake: How biases distort
    decision-making. Little, New York, NY: Little, Brown Book Group.
    Thames, L., and D. Schaefer. 2016. Software-defined cloud manufacturing for
    industry 4.0. Procedia Cirp, 52(3):12-17.
    Thaler, R. H. 2015. Misbehaving: the making of behavioral economics. London:Penguin Books.
    Yang, Jie; Ying, Limeng; Gao, Manru. 2020. The influence of intelligent manufacturing on financial performance and innovation performance: the case of China. Enterprise Information Systems, 14(6): 812-832.
    Yin, R. K. 2017. Case study research: Design and methods. New York, NY:Sage Publications.
    Description: 碩士
    國立政治大學
    會計學系
    109353015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109353015
    Data Type: thesis
    DOI: 10.6814/NCCU202200701
    Appears in Collections:[會計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    301501.pdf3580KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback