Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/140972
|
Title: | 風險值與期望損失之不同模型的績效評估—以商品市場為例 The Performance Evaluation of Value-at-Risk and Expected Shortfall Models Evidence from Commodity Market |
Authors: | 康涴茜 Kang, Wo-Chien |
Contributors: | 顏佑銘 Yen, Yu-Min 康涴茜 Kang, Wo-Chien |
Keywords: | 風險值 期望損失 FZ損失函數 預測 績效評估 Value-at-risk Expected shortfall FZ loss function Forecast Performance evaluation |
Date: | 2022 |
Issue Date: | 2022-08-01 17:04:45 (UTC+8) |
Abstract: | 巴塞爾公約已建議使用風險值(Value-at-Risk, VaR)和期望損失(Expected shortfall, ES)作為衡量尾端風險之工具。本研究採用了不同的模型來預測黃金、白銀、銅以及原油四種商品的VaR和ES。使用的方法包括了經由FZ損失函數(Fissler and Ziegel, 2016)來進行半參數模型估計與其他傳統模型。本研究以滾動窗方法估計VaR和ES模型並使用三種損失函數、命中率檢定以及Diebold-Mariano(DM)檢定進行預測績效評估。實證結果顯示在風險值水準為0.01與0.025之下,一些使用了FZ損失函數的半參數模型及非對稱GARCH模型,都各可以有不錯的表現;而在風險值水準為0.05與0.1之下,一些GARCH模型的預測績效平均而言反而較佳。 The Basel III Accord has proposed using Value-at-Risk (VaR) and Expected Shortfall (ES) as tail risk measures. The main purpose of this study is to forecast VaR and ES with different models for four commodities: gold, silver, copper, and crude oil. We use semi-parametric models with the FZ loss function (Fissler and Ziegel, 2016) and other traditional models to estimate VaR and ES with a rolling window approach. To evaluate forecasts performances, we use three loss functions, hit proportion test, and Diebold-Mariano (DM) test. The empirical results show that some semi-parametric models with the FZ loss function and asymmetric GARCH models perform well under the VaR levels of 0.01 and 0.025. Some GARCH models have relatively better forecasts performances under the VaR levels of 0.05 and 0.1. |
Reference: | 1. Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall, Journal of Banking & Finance, 26(7), 1487-1503. 2. Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999). Coherent measures of risk, Mathematical Finance, 9(3), 203-228. 3. Barone-Adesi, G., Giannopoulos, K., Vosper, L. (1999). VaR Without Correlations for Nonlinear Portfolios, Journal of Futures Markets, 19, 583-602. 4. Beder, T. S. (1995). VAR: Seductive but Dangerous, Financial Analysts Journal, 51(5), 12-24. 5. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31(3), 307-327. 6. Chen, Cathy W. S., Gerlach, Richard, Hwang, Bruce B. K. and McAleer, Michael (2012). Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range, International Journal of Forecasting, 28(3), 557-574. 7. Chou, R. Y., Yen, T. J. and Yen, Y. M. (2022). Forecasting Expected Shortfall and Value-at-Risk with the FZ Loss and Realized Variance Measures, Taiwan Economic Forecast and Policy, 52(3), 89-140. 8. Ding, Z., Granger, C. and Engle, R. (1993). A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1(1), 83-106. 9. Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 50(4), 987-1007. 10. Engle, R. F., and Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric Reviews, 5, 1-500. 11. Engle, R. F. and Manganelli, S. (2004). CAViaR:Conditional Autoregressive Value at Risk by Regression Quantiles, Journal of Business & Economic Statistics, 22(4), 367-381. 12. Fissler, T. and Ziegel , J. F. (2016). Higher order elicitability and Osbands principle, The Annals of Statistics, 44, 1680-1707. 13. Hull, J., and White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk, 1(1), 5-19. 14. Jeon, J. and Taylor, J. W. (2013). Using CAViaR models with implied volatility for value-at-risk estimation. Journal of Forecasting, 32(1), 62-74. 15. McCurdy, T. H. and Morgan, I. (1988). Testing the Martingale Hypothesis in Deutsche Mark Futures with Models Specifying the Form of the Heteroskedasticity, Journal of Applied Econometrics, 3, 187-202. 16. Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns:A New Approach, Econometrica, 59, 347-370. 17. Patton, A. J., Ziegel, J. F. and Chen, R. (2019). Dynamic semiparametric models for expected shortfall (and Value-at-Risk), Journal of Econometrics, 211, 388-413. 18. Riskmetrics, T. M. (1996). JP Morgan Technical Document. 19. Taylor, J. W. (2019). Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution, Journal of Business & Economic Statistics, 37, 121-133. 20. Yamai, Y. and Yoshiba, T. (2005). Value-at-Risk Versus Expected Shortfall: A Practical Perspective, Journal of Banking & Finance, 29(4), 997-1015. 21. Zheng, Y., Zhu, Q, Li, G. and Xiao, Z. (2018). Hybrid quantile regression estimation for time series models with conditional heteroscedasticity, Journal of the Royal Statistical Society Series B (Statistical Methodology), 80, 975-993. |
Description: | 碩士 國立政治大學 國際經營與貿易學系 109351027 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109351027 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202200574 |
Appears in Collections: | [國際經營與貿易學系 ] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
102701.pdf | | 2242Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|