English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51055354      Online Users : 915
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/140659
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140659


    Title: 關於黃金分割樹上的子平移之拓樸熵研究
    Topological Entropy of Golden-Mean Tree-Shift
    Authors: 蔡承育
    Tsai, Cheng-Yu
    Contributors: 班榮超
    Ban, Jung-Chao
    蔡承育
    Tsai, Cheng-Yu
    Keywords: 條型法
    拓樸及條型熵
    黃金分割子平移樹
    Strip method
    Topological and strip entropy
    Golden-mean tree-shift
    Date: 2022
    Issue Date: 2022-07-01 16:20:42 (UTC+8)
    Abstract: 於2019 年,Petersen 和Salama [1, 2] 給出了在樹上拓樸熵的定義並證明其存在且等於最大下界,此外,證明在k-tree 上考慮黃金子平移,條型熵h_n^{(k)}會收斂到拓樸熵h^{(k)}。

    此工作擴展了Petersen 和Salama 的結果,藉由考慮有限字母集A在黃
    金分割樹T上利用條型法去計算其拓樸熵h(T_A)。首先,給出一個實數值矩
    陣M^∗ 用來描述在高度為n條型樹上的複雜度。其次,找到兩個實數值矩
    陣C, D 使得b_{n−2}D ≤ M^∗ ≤ b_{n−2}C, 其中b_{n−2}是指所有在黃金分割樹上的子平移高度為n − 2 的著色數。最後,證明在黃金分割樹上的子平移,條型熵h_n(T_A) 將收斂到拓樸熵h(T_A)。
    In 2019, Petersen and Salama [1, 2] showed that the limit in their definition of tree-shift topological entropy is actually the infimum and also proved that the site specific strip approximation entropies h_n^{(k)} converges to the entropy h^{(k)} of the golden-mean shift of finite type on the k-tree.

    In this article, we prove that the preceding work of Petersen and Salama can be extended to consider a golden-mean tree T with finite alphabet A and use the strip method to calculate its topological entropy h(T_A). First, a real matrix M which describe the complexity of strip method tree with hight n is introduced. Second, two real matrices C and D are constructed for which b_{n−2}D ≤ M^∗ ≤ b_{n−2}C, where b_{n−2} is the number of all different labeling of subtree of the golden-mean tree-shift with level n − 2. Finally, we shown that the n-strip entropy h_n(T_A) will converge to the topological entropy h(T_A) of golden-mean tree-shift T_A.
    Reference: [1] Karl Petersen and Ibrahim Salama. Tree shift topological entropy. Theoretical Computer Science, 743:64–71, 2018.

    [2] Karl Petersen and Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 40(7):4453, 2020.

    [3] Nathalie Aubrun and Marie-Pierre Béal. Tree-shifts of finite type. Theoretical Computer Science, 459:16–25, 2012.

    [4] Nathalie Aubrun and Marie-Pierre Béal. Sofic tree-shifts. Theory of Computing Systems, 53(4):621–644, 2013.

    [5] Nishant Chandgotia and Brian Marcus. Mixing properties for hom-shifts and the distance between walks on associated graphs. Pacific Journal of Mathematics, 294(1):41–69, 2018.

    [6] Roy L Adler, Alan G Konheim, and M Harry McAndrew. Topological entropy. Transactions of the American Mathematical Society, 114(2):309–319, 1965.

    [7] Tomasz Downarowicz. Entropy in dynamical systems, volume 18. Cambridge University Press, 2011.

    [8] Douglas Lind, Brian Marcus, Lind Douglas, Marcus Brian, et al. An introduction to symbolic dynamics and coding. Cambridge university press, 1995.

    [9] Jung-Chao Ban and Chih-Hung Chang. Mixing properties of tree-shifts. Journal of Mathematical Physics, 58(11):112702, 2017.

    [10] Jung-Chao Ban and Chih-Hung Chang. Tree-shifts: Irreducibility, mixing, and the chaos of tree-shifts. Transactions of the American Mathematical Society, 369(12):8389–8407, 2017.

    [11] Jung-Chao Ban and Chih-Hung Chang. Tree-shifts: The entropy of tree-shifts of finite type. Nonlinearity, 30(7):2785, 2017.

    [12] Jung-Chao Ban, Chih-Hung Chang, Wen-Guei Hu, and Yu-Liang Wu. Topological entropy for shifts of finite type over Z and tree. arXiv preprint arXiv:2006.13415, 2020.

    [13] Jung-Chao Ban and Chih-Hung Chang. Characterization for entropy of shifts of finite type on cayley trees. Journal of Statistical Mechanics: Theory and Experiment, 2020(7): 073412, 2020.

    [14] Jung-Chao Ban, Chih-Hung Chang, and Yu-Hsiung Huang. Complexity of shift spaces on semigroups. Journal of Algebraic Combinatorics, 53(2):413–434, 2021.

    [15] Wei-Lin Lin. On the strip entropy of the golden-mean tree shift. Master’s thesis, National Chengchi University, 2021.

    [16] Itai Benjamini and Yuval Peres. Markov chains indexed by trees. The annals of probability, pages 219–243, 1994.

    [17] Hans-Otto Georgii. Gibbs measures and phase transitions. de Gruyter, 2011.
    Description: 碩士
    國立政治大學
    應用數學系
    109751002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109751002
    Data Type: thesis
    DOI: 10.6814/NCCU202200470
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100201.pdf703KbAdobe PDF2176View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback