Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/140656
|
Title: | 初探數學學習障礙症學童認知缺損型態之異質性 The heterogeneous defective pattern of cognitive functions in children with mathematics learning disorder: A preliminary study |
Authors: | 李雪靖 Li, Syue-Jing |
Contributors: | 楊啟正 Yang, Chi-Cheng 李雪靖 Li, Syue-Jing |
Keywords: | 數學學習障礙症 數學核心能力 神經心理功能 認知功能型態 異質性 Mathematics learning disorder Mathematics ability Neuropsychological function Cognitive function pattern Heterogeneity |
Date: | 2022 |
Issue Date: | 2022-07-01 16:20:01 (UTC+8) |
Abstract: | 背景:數學學習障礙症患者可能於學習基礎數學概念、數學事實提取、計算與推理中出現困難;這些症狀不僅會影響學業表現和就業機會,亦對日常生活造成困難。過去研究多探討患者於數學核心能力上的缺損,較少分析其神經心理功能;不僅如此,近期學者證實數學學習障礙症患者具高異質性之神經心理功能缺損。有鑑於此,本研究欲分析數學學習障礙症患者多面向神經心理功能與數學核心能力,並探究兩者間的關連性;除此之外,以個案系列分析方式,檢驗每位患者於整體認知缺損型態上的異質性,並進一步試圖將該群患者的整體認知缺損型態進行分類。 方法:本研究共招募10位國小五、六年級數學學習障礙症患者,與30位一般發展之國小五、六年級學童參與研究。所有受試者皆接受數學核心能力評估,以及多面向神經心理功能評估,包括:智力、訊息處理速度/命名速度、情節記憶(語文、視覺、數字情節記憶)與執行功能(語文工作記憶、視覺空間工作記憶、抑制能力、轉換能力、概念形成、思考流暢性),並將上述評估結果以t檢定與一般發展學童進行比較外;同時以修正t檢定,檢驗單一個案之分數與控制組是否具有顯著差異。最後,採用皮爾森相關,探討神經心理功能與數學核心能力間的關連性。 結果:本研究發現數學學習障礙症患者具顯著之多面向神經心理功能與數學核心能力缺損;且每位患者所展現出的認知缺損型態之差異性大。其次,數學學習障礙症患者之神經心理功能與數學核心能力具明顯關連性,包括數字概念與預估智商、語文情節記憶具顯著相關;估算與視覺情節記憶具顯著相關;計算與訊息處理速度、視覺情節記憶與概念形成具顯著相關;而應用題則與語文情節記憶、轉換能力具顯著相關。最後,數學學習障礙症患者的認知缺損型態可區分為三種類型—輕微神經心理功能缺損型、特定神經心理功能缺損型,以及廣泛神經心理功能缺損型。 結論:每位數學學習障礙症患者的認知缺損型態不同,且神經心理功能缺損的表現差異尤大。因此,即便該群體皆於學習數學上遇到困難,仍需對其神經心理功能做進一步評估與分析,方能釐清患者的整體認知缺損並提供適當的協助與治療。 Background: Mathematics learning disorder(MLD)may have difficulties in learning basic mathematical concepts, retrievaling arithmetic facts, calculation and reasoning; These symptoms will not only affect patient`s academic performance and employment, but cause their maladaptiveness in daily life. Previous studies have explored the defects of patients` mathematical ability without detailed analyses of their neuropsychological functions, which might the reason for a high heterogeneity of cognitive defective pattern of MLD. This study thus aims to analyze multi-faceted neuropsychological functions and mathematical ability of patients with MLD, and to further explore their associations. By means of case series analysis, the classification of MLD in terms of their cognitive defective pattern was presented. Methods: This study recruited 10 fifth and sixth grade patients with MLD and 30 typical development(TD)children. All participants will receive assessments of mathematical ability and multi-faceted neuropsychological functions, including intelligence, information processing speed/naming speed, episodic memory (verbal, visual, numerical episodic memory) and executive function (verbal working memory, visual spatial working memory, inhibition ability, switching ability, concept formation, thinking fluency). The neuropsychological function of MLD group and TD group was tested by t test, and the modified t test was used to test whether the scores of a single case were significantly different from the TD group. In addition, the pearson correlation was used to explore the correlation between neuropsychological functions and mathematical ability. Results: The results showed that patients with MLD had significant deficits in neuropsychological functions and mathematical abilities, and their cognitive deficitive pattern was highly heterogeneous. Second, the neuropsychological functions were significantly correlated with mathematical abilities, such that number concept had a significant correlation with estimated IQ and verbal episodic memory; number estimates had a significant correlation with visual episodic memory; calculation had a significant correlation with information processing speed, visual episodic memory and concept formation; word problem had a significant correlation with verbal episodic memory and switching ability. The cognitive defective pattern in patients with MLD could be further divided into three subtypes: Minimal Neuropsychological Impairment, Specific Neuropsychological Impairment and Global Neuropsychological Impairment. Conclusion: Each patient with MLD had different cognitive defective pattern, especially differences in neuropsychological deficits. Therefore, even if they all had difficulty in learning mathematics, further evaluation of their neuropsychological functions were required to clarify the patient`s overall cognitive deficits and provide appropriate assistance and treatment. |
Reference: | 王宣惠、洪儷瑜(2019)。我們真的認識數學障礙嗎?—臺灣數學障礙20年研究回顧與問題探究。特殊教育研究學刊,44,59-90。 孟瑛如、簡吟文(2014)。由DSM-5的改變談學習障礙未來的鑑定與教學輔導趨勢。輔導季刊,50,28-34。 孟瑛如、簡吟文、邱佳寧、陳虹君、周文聿(2015)。國民小學五至六年級數學診斷測驗。臺北市:心理。 柯華葳(1999)。基礎數學概念評量—四、五、六年級題本。臺北:行政院國家科學委員會。 柯華葳(2005)。數學學習障礙學生的診斷與確認。特殊教育研究學刊,29,113-126。 花茂棽、張本聖、林克能、楊建銘、盧小蓉、陳心怡(2005)。魏氏記憶量表第三版(中文版)。台北市:中國行為科學社。 洪儷瑜(2010)。不同類型的數學學習障礙學童的數學能力發展研究。行政院國家科學委員會補助專題研究計畫成果報告(編號:NSC98-2511-S-003-010-M),未出版。 洪儷瑜、連文宏(2018)。國小數學學習困難學童之心理數線表徵發展及其數線估計能力之研究。特殊教育研究學刊,43,29-52。 洪儷瑜、連文宏(2019)。國小學童計算能力之測量,發展軌跡與預測路徑。測驗學刊,66,51-82。 連文宏、洪儷瑜(2017)。數學學障與數學合併閱讀障礙國中生計算能力表現之特徵及其差異分析。臺灣數學教育期刊,4,35-62。 陳心怡、花茂棽、張本聖、陳榮華(2011)。以「魏氏兒童智力量表」(第四版)的四因素為基礎之簡式版本分析:臨床應用指引。測驗學刊,58,585-611。 陳榮華、陳怡心(2007)。魏氏兒童智力量表第四版(中文版)技術和解釋手冊。台北;中國行為科學社。 Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133-137. doi:10.1016/j.lindif.2010.09.013 American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders(3rd ed). Washington DC: American Psychiatric Association. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders(4th ed). Washington DC: American Psychiatric Association. American Psychiatric Association (2000). Diagnostic and Statistical manual of mental disorders(4th ed-TR). Washington DC: American Psychiatric Association. American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders(5th ed). Washington, DC: American Psychiatric Association. Andersson, U. (2007). The contribution of working memory to children`s mathematical word problem solving. Applied Cognitive Psychology, 21(9), 1201-1216. doi:10.1002/acp.1317 Andersson, U. (2008). Working memory as a predictor of written arithmetical skills in children: the importance of central executive functions. British Journal of Educational Psychology, 78(2), 181-203. doi:10.1348/000709907X209854 Andersson, U. (2010). Skill development in different components of arithmetic and basic cognitive functions: Findings from a 3-year longitudinal study of children with different types of learning difficulties. Journal of Educational Psychology, 102(1), 115-134. doi:10.1037/a0016838 Andersson, U., & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96(3), 197-228. Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22(6), 701-714. doi:10.1016/j.lindif.2012.05.004 Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., & Pascual-Leone, J. (2018). Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience, 30, 239-250. doi:10.1016/j.dcn.2017.08.002 Ashkenazi, Mark-Zigdon, N., & Henik, A. (2009). Numerical distance effect in developmental dyscalculia. Cognitive Development, 24(4), 387-400. doi:10.1016/j.cogdev.2009.09.006 Ashkenazi, Rosenberg-Lee, M., Metcalfe, A., Swigart, A., & Menon, V. (2013). Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51(11), 2305-2317. doi:10.1016/j.neuropsychologia.2013.06.031 Ashkenazi, Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2, S152-166. doi:10.1016/j.dcn.2011.09.006 Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35(3), 657-670. doi:10.1016/j.ridd.2013.12.010 Bellon, E., Fias, W., & De Smedt, B. (2019). More than number sense: The additional role of executive functions and metacognition in arithmetic. Journal of Experimental Child Psychology, 182, 38-60. doi:10.1016/j.jecp.2019.01.012 Benton, A. L., Sivan, A. B., Hamsher, K. D., Varney, N. R., & Spreen, O. (1994). Contributions to neuropsychological assessment: A clinical manual. Oxford University Press, USA. Berg, D. H. (2008). Working memory and arithmetic calculation in children: the contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99(4), 288-308. doi:10.1016/j.jecp.2007.12.002 Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205-228. doi:10.1080/87565640801982312 Bull, R., & Johnston, R. S. (1997). Children`s Arithmetical Difficulties- Contributions from Processing Speed, Item Identification, and Short-Term Memory. Journal of Experimental Child Psychology, 65(1), 1-24. Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children`s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273-293. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3-18. doi:10.1111/j.1469-7610.2005.00374.x Butterworth, B. (2011). Foundational Numerical Capacities and the Origins of Dyscalculia. In Space, Time and Number in the Brain. 249-265. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332(6033), 1049-1053 Chan, B. M., & Ho, C. S. (2010). The cognitive profile of Chinese children with mathematics difficulties. Journal of Experimental Child Psychology, 107(3), 260-279. doi:10.1016/j.jecp.2010.04.016 Cirino, P. T., Fuchs, L. S., Elias, J. T., Powell, S. R., & Schumacher, R. F. (2015). Cognitive and mathematical profiles for different forms of learning difficulties. Journal of Learning Disabilities, 48(2), 156-175. doi:10.1177/0022219413494239 Compton, D. L., Fuchs, L. S., Fuchs, D., Lambert, W., & Hamlett, C. (2012). The cognitive and academic profiles of reading and mathematics learning disabilities. Journal of Learning Disabilities, 45(1), 79-95. doi:10.1177/0022219410393012 Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63-68. doi:10.1016/j.tine.2013.12.001 Crawford, J. R., & Howell, D. C. (1998). Comparing an individual`s test score against norms derived from small samples. The Clinical Neuropsychologist, 12(4), 482-486. De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquiere, P. (2009). Working memory and individual differences in mathematics achievement: a longitudinal study from first grade to second grade. Journal of experimental child psychology, 103(2), 186-201. doi:10.1016/j.jecp.2009.01.004 De Weerdt, F., Desoete, A., & Roeyers, H. (2013). Working memory in children with reading disabilities and/or mathematical disabilities. Journal of Learning Disabilities, 46(5), 461-472. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506. doi:10.1080/02643290244000239 Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465-486. doi:10.1207/s15326942dn2601_6 Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., …Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29-43. doi:10.1037/0022-0663.98.1.29 Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A. M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265-281. doi:10.1016/j.jecp.2005.08.003 Geary, D. C. (1993). Mathematical Disabilities Cognitive Neuropsychological and genetic components. Psychological Bulletin, 114(2), 345. Geary, D. C. (2004). Mathematics and Learning Disabilities. Journal of Learning Disabilities, 37(1), 4-15. Geary, D. C. (2011a). Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Developmental Neuropsychology, 47(6), 1539-1552. doi:10.1037/a0025510 Geary, D. C. (2011b). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250-263. doi:10.1097/DBP.0b013e318209edef Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition- A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27(7), 787. Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics. Handbook of Mathematical Cognition, 253, 268. Geary, D. C., Hoard, M. K., Byrd‐Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive Mechanisms Underlying Achievement Deficits in Children With Mathematical Learning Disability. Child Development, 78(4), 1343-1359. Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental Change in the Influence of Domain-General Abilities and Domain-Specific Knowledge on Mathematics Achievement: An Eight-Year Longitudinal Study. Journal of Educational Psychology, 109(5), 680-693. doi:10.1037/edu0000159 Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grades. Journal of Experimental Child Psychology, 79(2), 192-227. doi:10.1006/jecp.2000.2586 Hitch, G. J., & McAuley, E. (1991). Working memory in children with specific arithmetical learning difficulties. British Journal of Psychology, 82(3), 375-386. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children`s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. doi:10.1016/j.jecp.2008.04.001 Holmes, J., & Adams, J. W. (2006). Working Memory and Children’s Mathematical Skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339-366. doi:10.1080/01443410500341056 Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 272. doi:10.3389/fpsyg.2014.00272 Iglesias-Sarmiento, V., Deano, M., Alfonso, S., & Conde, A. (2017). Mathematical learning disabilities and attention deficit and/or hyperactivity disorder: A study of the cognitive processes involved in arithmetic problem solving. Research in Developmental Disabilities, 61, 44-54. doi:10.1016/j.ridd.2016.12.012 Johnson, E. S., Humphrey, M., Mellard, D. F., Woods, K., & Swanson, H. L. (2010). Cognitive processing deficits and students with specific learning disabilities. Learning Disability Quarterly, 33(1), 3-18. Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in Human Neuroscience, 8, 57. doi:10.3389/fnhum.2014.00057 Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2, 31. doi:10.1186/1744-9081-2-31 Lan, X., Legare, C. H., Ponitz, C. C., Li, S., & Morrison, F. J. (2011). Investigating the links between the subcomponents of executive function and academic achievement: a cross-cultural analysis of Chinese and American preschoolers. J Journal of Experimental Child Psychology, 108(3), 677-692. doi:10.1016/j.jecp.2010.11.001 Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition, 93(2), 99-125. doi:10.1016/j.cognition.2003.11.004 Landerl, K., Göbel, S., & Moll, K. (2013). Core deficit and individual manifestations of developmental dyscalculia (DD): The role of comorbidity. Trends in Neuroscience and Education, 2(2), 38-42. doi:10.1016/j.tine.2013.06.002 Landerl, K., & Kolle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103(4), 546-565. doi:10.1016/j.jecp.2008.12.006 Lee, K., Bull, R., & Ho, R. M. (2013). Developmental changes in executive functioning. Child Development, 84(6), 1933-1953. doi:10.1111/cdev.12096 Lezak, M. D. (1982). The problem of assessing executive functions. International Journal of Psychology, 17(1-4), 281-297. Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychological Science, 14(5), 396-401. Mathieu, R., Epinat-Duclos, J., Leone, J., Fayol, M., Thevenot, C., & Prado, J. (2018). Hippocampal spatial mechanisms relate to the development of arithmetic symbol processing in children. Developmental Cognitive Neuroscience, 30, 324-332. doi:10.1016/j.dcn.2017.06.001 Moll, K., Gobel, S. M., Gooch, D., Landerl, K., & Snowling, M. J. (2016). Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory. Journal of Learning Disabilities, 49(3), 272-281. doi:10.1177/0022219414547221 Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215(5109), 1519-1520. Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., …Nassogne, M. C., & Noël, M. P. (2010). Neural Correlates of Symbolic Number Comparison in Developmental Dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860-874. Mussolin, C., Mejias, S., & Noel, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. doi:10.1016/j.cognition.2009.10.006 Mussolin, C., & Noel, M. P. (2008). Automaticity for numerical magnitude of two-digit Arabic numbers in children. Acta Psychologica, 129(2), 264-272. doi:10.1016/j.actpsy.2008.08.001 Panaoura, A., & Philippou, G. (2007). The developmental change of young pupils’ metacognitive ability in mathematics in relation to their cognitive abilities. Cognitive Development, 22(2), 149-164. doi:10.1016/j.cogdev.2006.08.004 Passolunghi, M. C. (2011). Cognitive and Emotional Factors in Children with Mathematical Learning Disabilities. International Journal of Disability, Development and Education, 58(1), 61-73. doi:10.1080/1034912x.2011.547351 Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80(1), 44-57. doi:10.1006/jecp.2000.2626 Peng, P., Congying, S., Beilei, L., & Sha, T. (2012). Phonological storage and executive function deficits in children with mathematics difficulties. Journal of Experimental Child Psychology, 112(4), 452-466. doi:10.1016/j.jecp.2012.04.004 Peng, P., & Fuchs, D. (2016). A Meta-Analysis of Working Memory Deficits in Children With Learning Difficulties: Is There a Difference Between Verbal Domain and Numerical Domain? Journal of Learning Disabilities, 49(1), 3-20. doi:10.1177/0022219414521667 Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455-473. doi:10.1037/edu0000079 Peng, P., Wang, C., & Namkung, J. (2018). Understanding the Cognition Related to Mathematics Difficulties: A Meta-Analysis on the Cognitive Deficit Profiles and the Bottleneck Theory. Review of Educational Research, 88(3), 434-476. doi:10.3102/0034654317753350 Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293-305. doi:10.1016/j.neuron.2006.11.022 Pickering, S., & Gathercole, S. (2001). Working Memory Test Battery for Children (WMTB-C). London, UK: Psychological Corporation. Poletti, M. (2016). WISC-IV Intellectual Profiles in Italian Children With Specific Learning Disorder and Related Impairments in Reading, Written Expression, and Mathematics. Journal of Learning Disabilities, 49(3), 320-335. doi:10.1177/0022219414555416 Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children`s cognitive development. Nature Neuroscience, 17(9), 1263-1269. doi:10.1038/nn.3788 Raghubar, K., Barnes, A., & Hecht, A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110-122. doi:10.1016/j.lindif.2009.10.005 Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with math difficulties. Journal of Learning Disabilities, 42(4), 356-371. Ranpura, A., Isaacs, E., Edmonds, C., Rogers, M., Lanigan, J., Singhal, A., . . . Butterworth, B. (2013). Developmental trajectories of grey and white matter in dyscalculia. Trends in Neuroscience and Education, 2(2), 56-64. doi:10.1016/j.tine.2013.06.007 Raven, J., Raven, J. C., and Court, J. H. (1998). Section 2: Coloured Progressive matrices. Manual for the Raven’s Progressive Matrices and Vocabulary Scales. Great Britain: Oxford Psychologist Press. Reitan, R. M.(1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271-276. Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A neuropsychological perspective. Journal of Learning disabilities, 26(4), 214-226. Rousselle, L., & Noel, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395. doi:10.1016/j.cognition.2006.01.005 Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: a study of developmental dyscalculia. Neuropsychology, 19(5), 641-648. doi:10.1037/0894-4105.19.5.641 Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences, 13(2), 92-99. doi:10.1016/j.tics.2008.11.002 Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. doi:10.3389/neuro.09.051.2009 Seethaler, P. M., Fuchs, L. S., Star, J. R., & Bryant, J. (2011). The Cognitive Predictors of Computational Skill with Whole versus Rational Numbers: An Exploratory Study. Learning and Individual Differences, 21(5), 536-542. doi:10.1016/j.lindif.2011.05.002 Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475-487. Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., ... & Denckla, M. B. (1993). Volumetric MRI changes in basal ganglia of children with Tourette`s syndrome. Neurology, 43(5), 950-950. Spaniol, J., Davidson, P. S., Kim, A. S., Han, H., Moscovitch, M., & Grady, C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia, 47(8-9), 1765-1779. doi:10.1016/j.neuropsychologia.2009.02.028 Squire, L. R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171-177. doi:10.1016/j.nlm.2004.06.005 St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59(4), 745-759. doi:10.1080/17470210500162854 Stievano, P., Cammisuli, D. M., Michetti, S., Ceccolin, C., & Anobile, G. (2018). Cognitive processes underlying arithmetical skills in primary school: the role of fluency, handwriting, number line and number acuity. Neuropsychological Trends, 23, 115-138. doi:10.7358/neur-2018-023-camm Stock, P., Desoete, A., & Roeyers, H. (2009). Predicting Arithmetic Abilities The Role of Preparatory Arithmetic Markers and Intelligence. Journal of Psychoeducational Assessment, 27(3), 237-251. Swanson, L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of Educational Research, 76(2), 249-274. Swanson, L., & Kim, K. (2007). Working memory, short-term memory, and naming speed as predictors of children`s mathematical performance. Intelligence, 35(2), 151-168. doi:10.1016/j.intell.2006.07.001 Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96, 471–491. Szucs, D. (2016). Subtypes and comorbidity in mathematical learning disabilities: Multidimensional study of verbal and visual memory processes is key to understanding. Progress in Brain Research, 227, 277-304. doi:10.1016/bs.pbr.2016.04.027 Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674-2688. doi:10.1016/j.cortex.2013.06.007 Toffalini, E., Giofrè, D., & Cornoldi, C. (2017). Strengths and Weaknesses in the Intellectual Profile of Different Subtypes of Specific Learning Disorder- A Study on 1,049 Diagnosed Children. Clinical Psychological Science, 5(2), 402-409. Toll, S. W., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44(6), 521-532. doi:10.1177/0022219410387302 Traff, U., Olsson, L., Ostergren, R., & Skagerlund, K. (2016). Heterogeneity of Developmental Dyscalculia: Cases with Different Deficit Profiles. Frontiers in Psychology, 7, 2000. doi:10.3389/fpsyg.2016.02000 Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cerebral Cortex, 20(11), 2636-2646. doi:10.1093/cercor/bhq011 van der Sluis, S., de Jong, P. F., & van der Leij, A. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of Experimental Child Psychology, 87(3), 239-266. doi:10.1016/j.jecp.2003.12.002 Van der Ven, S. H., Kroesbergen, E. H., Boom, J., & Leseman, P. P. (2012). The development of executive functions and early mathematics: a dynamic relationship. British Journal of Educational Psychology, 82(1), 100-119. doi:10.1111/j.2044-8279.2011.02035.x Wager, T. D., Sylvester, C. Y., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. Neuroimage, 27(2), 323-340. doi:10.1016/j.neuroimage.2005.01.054 Welsh, J. A., Nix, R. L., Blair, C., Bierman, K. L., & Nelson, K. E. (2010). The Development of Cognitive Skills and Gains in Academic School Readiness for Children from Low-Income Families. Journal of Educational Psychology, 102(1), 43-53. doi:10.1037/a0016738 Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., Defries, J. C., Olson, R. K., & Pennington, B. F. (2013). Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal of Learning Disabilities, 46(6), 500-516. doi:10.1177/0022219413477476 Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88-101. Yeniad, N., Malda, M., Mesman, J., van Ijzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23, 1-9. doi:10.1016/j.lindif.2012.10.004 |
Description: | 碩士 國立政治大學 心理學系 107752017 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0107752017 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202200532 |
Appears in Collections: | [心理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
201701.pdf | | 3279Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|