English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51029599      Online Users : 950
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/140606
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140606


    Title: 中國大陸ETF追蹤誤差之研究——以金融行業為例
    Research on the Tracking Errors of ETF in China – Empirical Analysis of Financial Industry
    Authors: 李文婕
    Li, Wen-Jie
    Contributors: 陳威光
    李文婕
    Li, Wen-Jie
    Keywords: 股票指數型基金
    ETF
    追蹤誤差
    Exchange traded fund
    ETFs
    Tracking errors
    Date: 2022
    Issue Date: 2022-07-01 16:11:06 (UTC+8)
    Abstract: 隨著近幾年ETF在中國大陸金融市場的飛速發展,越來越多的資金流入市場,行業ETF越來越受到投資者的歡迎。截至2021年底,中國A股市場上市的ETF數量達到了641檔,規模超過了1.4萬億人民幣。
    本文以中國大陸金融行業ETF為研究對象對其的追蹤誤差進行研究,採用多種方法度量各檔ETF的追蹤誤差,並從不同的角度對各檔ETF進行橫向對比,最後通過實證分析探究哪些因素會對追蹤誤差產生影響。得到了以下主要結論:
    當通過平均值追蹤誤差法衡量ETF追蹤誤差時,首先發現14檔ETF中有12檔的平均追蹤誤差值為正,僅2檔ETF追蹤誤差為負。進一步觀察2020至2021年間的正/負追蹤誤差頻率時,有7檔有100%正追蹤誤差頻率,最低的正追蹤誤差頻率也有82.80%。平均14檔樣本資料中正追蹤誤差百分比高達97.52%。
    以業界的規定的風險控管臨界值不超過0.2%作為日追蹤偏離度絕對值的衡量依據,發現14檔中有其中有5檔偏離的頻率在1%之下,11檔偏離臨界值的機率低於5%。另外用業界的年標準差追蹤誤差不高於2%為標準來判斷時,在2020-2021年間有11檔沒有超出臨界值,只有4檔超出範圍。
    對追蹤誤差影響因素做實證分析,發訊成交量、複製策略、資產規模、指數波動率變數顯著影響ETF的追蹤誤差,而指數成分股變動率折溢價率的結果並不顯著。
    With the rapid development of ETF in the Chinese mainland financial market in recent years, a large amount of funds into the market, ETF is more and more popular with investors. By the end of 2021, the number of ETFs listed on China`s A-share market reached 641, with A total value of more than 1.4 trillion yuan.
    This paper takes ETFs in the financial industry in mainland China as the research object to study the tracking error of ETFs, adopts a variety of methods to measure the tracking error of ETFs, and makes a horizontal comparison of ETFs from different perspectives. Finally, empirical analysis is conducted to explore which factors will have an impact on the tracking error. The main conclusions are as follows:
    When the average tracking error method is used to measure the tracking error of ETFs, it is first found that the average tracking error value of 12 out of 14 ETFs is positive, and only 2 ETFs are negative. When looking further at the positive/negative tracking error frequency from 2020 to 2021, seven tracks had 100% positive tracking error frequency, and the lowest positive tracking error frequency was 82.80%. The average positive tracking error percentage of 14 samples is 97.52%.
    The absolute value of daily tracking deviation was measured by the industry risk control threshold not exceeding 0.2%. It was found that 5 of the 14 ETFs deviated less than 1% of the time, and 11 ETFs deviated less than 5% of the time. In addition, when the industry`s annual standard deviation tracking error is no more than 2%, there are 11 ETFs that do not exceed the critical value in 2020-2021, and only 4 ETFs that exceed the range.
    Empirical analysis of the factors influencing the tracking error shows that the transaction volume, replication strategy, asset size and index volatility variables significantly affect the tracking error of ETF, while the change rate and discount rate of index components are not significant.
    Reference: [1] Beasley, J. E., Meade, N., & Chang, T. J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621-643.
    [2] Buetow, G. W., & Henderson, B. J. (2012). An empirical analysis of exchange- traded funds. The Journal of Portfolio Management, 38(4), 112–127.
    [3] Chu, P. K. K. (2011). Study on the tracking errors and their determinants: Evidence from Hong Kong exchange traded funds. Applied Financial Economics, 21(5), 309–315.
    [4] Chu, P. K. K. (2016). Analysis and forecast of tracking performance of Hong Kong exchange-traded funds: Evidence from tracker fund and X iShares A50. Review of Pacific Basin Financial Markets and Policies, 19(04), 1650022.
    [5] Dorocáková, M. (2017). Comparison of ETF s performance related to the tracking error. Journal of International Studies, 10(4), 154-165.
    [6] Engle, R. F., & Sarkar, D. (2006). Premiums-discounts and exchange-traded funds. ETFs and Indexing, 2006(1), 35–53.
    [7] Frino, A., & Gallagher, D. R. (2001). Tracking S&P 500 index funds. The Journal of Portfolio Management, 28(1), 44–55.
    [8] Frino, A., & Gallagher, D. R. (2002). Is index performance achievable? An analysis of Australian equity index funds. Abacus, 38(2), 200–214.
    [9] Frino, A., Gallagher, D. R., Neubert, A. S., & Oetomo, T. N. (2004). Index design and implications for index tracking. The Journal of Portfolio Management, 30(2), 89-95.
    [10] Poterba, J. M., & Shoven, J. B. (2002). Exchange-traded funds: A new investment option for taxable investors. American Economic Review, 92(2), 422-427.
    [11] Rompotis, G. G. (2009). Performance and trading characteristics of iShares: An evaluation. IUP Journal of Applied Finance, 15(7), 24.13. Roll, R. (1992). A mean/variance analysis of tracking error. Journal of Portfolio Management, 18(4), 13–22.
    [12] Rompotis, G. G. (2011). Predictable patterns in ETFs` return and tracking error. Studies in Economics and Finance.
    [13] Shin, S., & Soydemir, G. (2010). Exchange-traded funds, persistence in tracking errors and information dissemination. Journal of Multinational Financial Management, 20(4), 214–234.
    [14] Singh, J., & Kaur, P. (2016). Tracking efficiency of exchange traded funds (ETFs) empirical evidence from Indian equity ETFs. Paradigm, 20(2), 176-190.
    [15] 尤亭歡. (2014). 台灣, 香港, 中國三地 ETF追蹤誤差之研究.
    [16] 陳春鋒, & 陳偉忠. (2004). 指數優化復製的方法, 模型與實證. 數量經濟技術經濟研究, (12), 106-115.
    Description: 碩士
    國立政治大學
    金融學系
    109352036
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109352036
    Data Type: thesis
    DOI: 10.6814/NCCU202200632
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2220View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback