政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/140604
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113393/144380 (79%)
造訪人次 : 51238647      線上人數 : 843
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/140604
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/140604


    題名: 基於 LSTM 之外匯預測模型
    LSTM Model for Forecasting Exchange Rates
    作者: 黃莉婷
    Huang, Li-Ting
    貢獻者: 林建秀
    Ling, Chien-Hsiu
    黃莉婷
    Huang, Li-Ting
    關鍵詞: 未拋補利率平價
    購買力平價
    貨幣學派
    泰勒法則
    長短期記憶模型
    Uncovered interest rate parity
    Purchasing power parity
    Monetary fundamental
    Taylor rule
    LSTM
    日期: 2022
    上傳時間: 2022-07-01 16:10:40 (UTC+8)
    摘要: 本研究探討深度學習 LSTM 模型與線性迴歸 OLS 模型對於新台幣兌美元匯 率走勢預測表現,根據未拋補利率平價模型(UIRP)、購買力平價模型(PPP)、 貨幣模型(MF)以及泰勒模型(Taylor)選擇總體經濟變數,並且將總體經濟變 數區分為 Decouple 與 Couple 型態納入 LSTM 模型與 OLS 模型進行預測,最後 以 R square、Theil 比率作為衡量預測能力標準,除此之外,本研究進一步比較各 模型的方向預測表現與交易策略表現,分別利用方向準確率與夏普比率作為衡量 準則。

    實證結果顯示,LSTM 模型在匯率預測能力、方向準確率以及交易策略表現 皆優於 OLS 模型,其中以 Recursive LSTM 模型表現最佳。在總體經濟變數方面, MF 整體表現較 UIRP、PPP 以及 Taylor 差,UIRP、PPP 以及 Taylor 表現依據總 經變數 Couple 型態與 Decouple 型態而有些微不同,Couple 型態下 3 種經濟變數 整體表現不相上下,而 Decouple 型態下 UIRP 整體表現優於其他 3 種經濟變數 組合。
    This paper explores the performance of deep learning LSTM model and linear regression OLS model for the prediction of the exchange rate between NT dollars and US dollars. I select the economic variables according to the uncovered interest rate parity model, the purchasing power parity model (PPP), the currency fundamental model (MF) and the Taylor rule model (Taylor), and divide all economic variables into Decouple and Couple types for prediction. R square and Theil ratio are used as the standard to measure the prediction ability. In addition, this paper also compares the hedging performance and economic benefit of the model which are measured by the hedging accuracy rate and the Sharpe ratio, respectively.

    The results show that the LSTM model outperforms the OLS model in exchange rate prediction ability, hedging accuracy and economic benefit. The Recursive LSTM model performs the best. In the economic variables, the overall performance of MF is worse than that of UIRP, PPP and Taylor model. The performance of UIRP, PPP and Taylor is different according to the Couple type and Decouple type. The UIRP, PPP and Taylor model under the Couple type get similar performance. The comprehensive performance of UIRP under the Decouple type is better than that of the other three economic variable combinations.
    參考文獻: [1] 程智男、林建秀、尤保傑(2016)。有效匯率預測模型與避險績效比較。應 用經濟論叢,99,37-82。
    [2] Amat, Christophe, Tomasz Michalski, and Gilles Stoltz (2018). Fundamentals and exchange rate forecasta- bility with simple machine learning methods. Journal of International Money and Finance, 88: 1–24.
    [3] Cheung, Y. W., M. D. Chinn, and A. G. Pascual, (2005). Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive? Journal of International Money and Finance, 24: 1150-1175.
    [4] Della Corte, P. and I. Tsiakas, (2011). Statistical and Economic Methods for Evaluating Exchange Rate Predictability. in James, J., I. Marsh, and L. Sarno, ed., Handbooks of Exchange Rates, 239-283, NJ: Wiley and Sons Inc. Press.
    [5] Engel, C. and K. D. West, (2005). Exchange Rates and Fundamentals, Journal of Political Economy. 113: 485-517.
    [6] Engel, C. and K. D. West, (2006). Taylor Rules and the Deutschmark-dollar Real Exchange Rate. Journal of Money, Credit and Banking, 38: 1175-1994.
    [7] Engel, C., N. C. Mark, and K. D. West, (2007). Exchange Rate Models are Not as Bad as You Think. NBER Working Paper, No. 13318.
    [8] Groen, J. J. J., (2000). The Monetary Exchange Rate Model as a Long-run Phenomenon. Journal of International Economics, 52: 299-319.
    [9] Isha S Meshram, Prajakta J Kulal (2021). A comparative study of SVM, LSTM and LR algorithms for stock market prediction using OHLS data. International Research Journal of Modernization in Engineering Technology and Science, 3: 1316-1322.
    [10] Kumar, P.H.; Patil, S.B. (2018). Forecasting volatility trend of INR USD currency pair with deep learning LSTM techniques. In Proceedings of the 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 20–22 December 2018; pp. 91–97.
    42
    [11] Mark, N. C. and D. Sul, (2001). Nominal Exchange Rates and Monetary Fundamentals: Evidence from a Small Post-bretton Woods Panel. Journal of International Economics, 53: 29-52.
    [12] Mark, N. C., (1995). Exchange Rates and Fundamentals: Evidence on Long- horizon Predictability. American Economic Review, 85: 201-218.
    [13] Mark, N. C., (2009). Changing Monetary Policy Rules, Learning, and Real Exchange Rate Dynamics. Journal of Money, Credit and Banking, 41: 1047-1070.
    [14] Meese, R. A. and K. Rogoff, (1983). Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample? Journal of International Economics, 14: 3- 24.
    [15] Molodtsova, T. and D. H. Papell, (2009). Out-of-Sample Exchange Rate Predictability with Taylor Rule Fundamentals? Journal of International Economics, 77: 167-180.
    [16] Molodtsova, T., and D. H. Papell, (2012). Taylor Rule Exchange Rate Forecasting During the Financial Crisis. NBER Working Paper, No. 18330.
    [17] Nelson,M.Q., Pereira, A.C.M. and deOliveira,R.A. (2017). Stockmarketsprice movement prediction with LSTM neural networks. International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, pp. 1419-1426.
    [18] Qi, L., Khushi, M., Poon, J. (2020). Event-driven LSTM for forex price prediction. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, pp. 16-18.
    [19] Taylor, A. M. and M. P. Taylor, (2004). The Purchasing Power Parity Debate. Journal of Economic Perspectives, 18: 135-158.
    [20] Taylor, J. B., (1993). Discretion versus Policy Rules in Practice. Carnegie- Rochester Conference Series on Public Policy, 39: 195-214.
    [21] Yaxin Qu and Xue Zhao (2019). Application of LSTM neural network in forecasting foreign exchange price. Journal of Physics: Conference Series.
    [22] Yildirim, D. C., Toroslu, I. H., & Fiore, U. (2021). Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators. Financial Innovation, 7(1), 1–36.
    描述: 碩士
    國立政治大學
    金融學系
    109352024
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109352024
    資料類型: thesis
    DOI: 10.6814/NCCU202200676
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    202401.pdf2284KbAdobe PDF21檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋