English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113148/144119 (79%)
Visitors : 50709212      Online Users : 278
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/140595
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140595


    Title: 對抗式 Text-to-Text Transformer 網路於深度序列特徵學習
    Adversarial Text-to-Text Transformer Nets for Deep Sequential Feature Learning
    Authors: 郭耀威
    Kuok, Io-Wai
    Contributors: 蕭舜文
    Hsiao, Shun-Wen
    郭耀威
    Kuok, Io-Wai
    Keywords: 序列
    特徵學習
    對抗式學習
    語言模型
    非自然語言處理
    Sequential
    Feature learning
    Adversarial learning
    Language model
    non-NLP
    Date: 2022
    Issue Date: 2022-07-01 16:08:40 (UTC+8)
    Abstract: 數位資料具影響力而且在急速增長,理解這些結構複雜的資訊進行營運改進是一個關鍵課題,但是進行「理解」需要耗盡資源和時間,我們針對以上問題,開發僅以主流可取得的資源上解決問題的方法。我們透過當前最先進的語言模型上套用對抗式方法,加上結合模型多任務學習策略,提出一個高效率的深度序列特徵學習作法。使用提出方法的模型能夠配合不同特性的巨量資料,提取序列中有意義的特徵供作進行任何類別的任務。我們對現實序列事件中不同特性的資料進行實驗,然後與例如 BERT 和 T5 等先進語言模型進行比較,我們也會在提出方法中剝離部分結構作研究。實證結果顯示,我們提出的方法只需使用 BERT-small 三分之一規模的模型,進行自然語言處理能取得相近的效能,而且在部分在非自然語言資料的任務中取得最佳結果。
    Digital data is impactive and rapid growing. Learning that complex compound information to improve operations is critical, but those assignments are against time and resources, therefore we aim to develop a method to complete this objective with mainstream hardware. We propose an efficient deep sequential learning approach by applying adversarial techniques and multitask learning strategy to the state-of-the-act language model. The model is capable of adapting massive polymorphous types of sequences, obtaining the sequential representation and preserving the symbolic information for unified heterogeneous downstream tasks. We are conducting several experiments on various characteristic data in real-world sequential events and providing a comprehensive comparison with SOTA NLP models such as T5 and BERT, we are also investigating the ablation result in the comparison. Empirical results show that our approach can accomplish nearly perfect performance in NLP tasks with one-third size of the BERT-small model, and the best result in some non-NLP tasks.
    Reference: [1] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning: A review and new perspectives,”
    IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 1798–1828, 2013.
    [2] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,” Philosophical Magazine Series 1, vol. 2, pp. 559–572.
    [3] M. J. Greenacre and J. Blasius, “Multiple correspondence analysis and related methods,” 2006.
    [4] W.-J. Li, D.-Y. Yeung, and Z. Zhang, “Probabilistic relational pca,” in NIPS, 2009.
    [5] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “Made: Masked autoencoder for distribution estimation,” in ICML, 2015.
    [6] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recurrent latent variable model for sequential data,” in NIPS, 2015.
    [7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.
    [8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
    [9] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in ICLR, 2013.
    [10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in NIPS, 2013.
    [11] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in NIPS, 2014.
    [12] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in NAACL, 2018.
    [13] Google, “The wordpiece algorithm in open source bert,” Oct 2018.
    [14] T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing,” in EMNLP, 2018.
    [15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by backpropagating errors,” Nature, vol. 323, pp. 533–536, 1986.
    [16] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” ArXiv, vol. abs/1706.03762, 2017.
    [17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” ArXiv, vol. abs/1810.04805, 2019.
    [18] A. Radford and K. Narasimhan, “Improving language understanding by generative pre-training, 2018.
    [19] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” ArXiv, vol. abs/1910.10683, 2020.
    [20] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does bert look at? an analysis of bert’s attention,” in BlackboxNLP@ACL, 2019.
    [21] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,” ArXiv, vol. abs/2001.04451, 2020.
    [22] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,” ArXiv, vol. abs/2004.05150, 2020.
    [23] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov, “Transformer-xl: Attentive language models beyond a fixed-length context,” ArXiv, vol. abs/1901.02860, 2019.
    [24] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert for self-supervised learning of language representations,” ArXiv, vol. abs/1909.11942, 2020.
    [25] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” in ACL, 2020.
    [26] S. Kobayashi, “Homemade bookcorpus.” https://github.com/BIGBALLON/cifar-10-cnn, 2018.
    [27] W. Foundation, “Wikimedia downloads.” https://dumps.wikimedia.org, 2020.
    [28] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mass: Masked sequence to sequence pre-training for language generation,” in ICML, 2019.
    [29] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt, “Practical and optimal lsh for angular distance,” ArXiv, vol. abs/1509.02897, 2015.
    [30] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible residual network: Backpropagation without storing activations,” in NIPS, 2017.
    [31] GoodfellowIan, Pouget-AbadieJean, MirzaMehdi, Xubing, Warde-FarleyDavid, OzairSherjil, CourvilleAaron, and BengioYoshua, “Generative adversarial networks,” Communications of The ACM, 2020.
    [32] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” ArXiv, vol. abs/1701.07875, 2017.
    [33] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR, vol. abs/1312.6114, 2014.
    [34] A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow, “Adversarial autoencoders,” ArXiv, vol. abs/1511.05644, 2015.
    [35] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural networks,” Aiche Journal, vol. 37, pp. 233–243, 1991.
    [36] A. B. L. Larsen, S. K. Sonderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” ArXiv, vol. abs/1512.09300, 2016.
    [37] A. Plumerault, H. L. Borgne, and C. Hudelot, “Avae: Adversarial variational auto encoder,” 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8687–8694, 2021.
    [38] A. Pagnoni, K. Liu, and S. Li, “Conditional variational autoencoder for neural machine translation,” ArXiv, vol. abs/1812.04405, 2018.
    [39] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” ArXiv, vol. abs/1411.1784, 2014.
    [40] P. Bhargava, A. Drozd, and A. Rogers, “Generalization in nli: Ways (not) to go beyond simple heuristics,” 2021.
    [41] I. Turc, M. Chang, K. Lee, and K. Toutanova, “Well-read students learn better: The impact of student initialization on knowledge distillation,” CoRR, vol. abs/1908.08962, 2019.
    [42] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email classification research,” in ECML, 2004.
    [43] mrm8488, “Mrm8488/fake-news · datasets at hugging face,” Oct 2021.
    [44] F. O. Catak and A. F. Yazi, “A benchmark api call dataset for windows pe malware classification,” ArXiv, vol. abs/1905.01999, 2019.
    [45] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
    [46] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, “Data augmentation based malware detection using convolutional neural networks,” PeerJ Computer Science, vol. 7, p. e346, Jan. 2021.
    [47] A. F. Yazi, F. O. Catak, and E. G¨ul, “Classification of methamorphic malware with deep learning(lstm),” 2019 27th Signal Processing and Communications Applications Conference (SIU), pp. 1–4, 2019.
    [48] P. Gage, “A new algorithm for data compression,” The C Users Journal archive, vol. 12, pp. 23– 38, 1994.
    [49] S. Reese, G. Boleda, M. Cuadros, L. Padr´o, and G. Rigau, “Wikicorpus: A word-sense disambiguated multilingual Wikipedia corpus,” in Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), (Valletta, Malta), European Language Resources Association (ELRA), May 2010.
    [50] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler, “Aligning books and movies: Towards story-like visual explanations by watching movies and reading books,” in The IEEE International Conference on Computer Vision (ICCV), December 2015.
    [51] Q. Lhoest, A. Villanova del Moral, Y. Jernite, A. Thakur, P. von Platen, S. Patil, J. Chaumond, M. Drame, J. Plu, L. Tunstall, J. Davison, M. ˇSaˇsko, G. Chhablani, B. Malik, S. Brandeis, T. Le Scao, V. Sanh, C. Xu, N. Patry, A. McMillan-Major, P. Schmid, S. Gugger, C. Delangue, T. Matussi"ere, L. Debut, S. Bekman, P. Cistac, T. Goehringer, V. Mustar, F. Lagunas, A. Rush, and T. Wolf, “Datasets: A community library for natural language processing,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, (Online and Punta Cana, Dominican Republic), pp. 175–184, Association for Computational Linguistics, Nov. 2021.
    [52] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, (Online), pp. 38–45, Association for Computational Linguistics, Oct. 2020.
    Description: 碩士
    國立政治大學
    資訊管理學系
    108356041
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108356041
    Data Type: thesis
    DOI: 10.6814/NCCU202200631
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    604101.pdf8839KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback