政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/140199
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51057736      Online Users : 932
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140199


    Title: 何種Beta預測效果較佳?以台灣股市為例
    Which Beta? The Case in Taiwan
    Authors: 李佳恩
    Lee, Chia-En
    Contributors: 鍾令德
    Chung, Ling-Tak
    李佳恩
    Lee, Chia-En
    Keywords: 貝塔係數
    系統性風險
    避險投資組合
    Beta coefficient
    Systematic risk
    Hedging portfolio
    Date: 2022
    Issue Date: 2022-06-01 16:25:21 (UTC+8)
    Abstract:   本文旨在探討在資本資產定價模型架構之中應用八種不同的β係數估計模型對於預測台灣個股系統性風險的能力以及對於台股投資者建立避險策略的有效性。研究樣本對象為1991年1月至2021年7月之所有台灣上市及上櫃共1,754檔股票。β係數的估計方法大致分別為最小平方法、貝葉斯收縮法、縮尾處理法以及衰減參數縮尾處理法,再利用前期估算的β係數對未來估算的β係數進行迴歸預測分析,從而篩選出預測性能優異的估計模型並將之用於建立市場避險投資組合,並回測模型成效。

      實證結果顯示,已實際應用於其他已開發國家股市的β係數估計方法同樣可應用於台灣股市。而使用縮尾處理與衰減參數能有效提升β係數之預測準確度,至於使用貝葉斯收縮後所得出的預測準確度亦位於前列。在資料頻率使用方面,日報酬率在估算β係數上的實用性明顯高於月報酬率。最後,在建立市場避險投資組合的應用中,我們發現上述預測表現優異的β係數模型能有效降低投資組合報酬的波動率。總體而言,本研究驗證的β係數預測模型可供台股投資者作為評估系統性風險之指標,同時投資者應妥善衡量並考慮其它投資因子,以期達到更佳的投資組合風險管理成效。
      This thesis studies the predicting performances of eight CAPM beta estimators and their effectiveness in hedging strategies for Taiwanese investors. Our sample ranges from 1991 to 2021, covering 1,754 listed companies. We use a combination of ordinary least squares, Bayesian shrinkage, slope winsorization, and decay parameter method to estimate CAPM betas of individual stocks. By running predictive regression, we test whether these ex-ante beta estimates can reliably predict their ex-post counterparts. Finally, we use these betas to form market-neutral stock portfolios and evaluate their hedging performances.

      Our analysis brings four major conclusions. First, the beta estimators applied in other stock markets of developed countries are also effective in the Taiwanese stock market. Second, slope winsorization and decay parameters can significantly improve the predictive accuracy of beta estimates, while Bayesian shrinkage estimators also perform well. Third,
    betas estimated from daily data are better than those estimated from monthly data in predicting future betas. Forth, beta estimates with good predictive performances can effectively reduce variances of beta-hedged portfolios. Overall, this thesis provides a general guideline for improving the measurement of stock-level systematic risk through the lens of CAPM betas in Taiwan. Taiwanese investors can better manage their portfolio risks by monitoring market betas and alternative investment factor exposures.
    Reference: Avramov, D., and Chordia, T. (2003). Asset Pricing Models and Financial Market Anomalies. Review of Financial Studies, 19, 1001-1040.

    Baur, D.G., and Schulze, N. (2010). The Risk of Beta – Investor Learning and Prospect Theory. Working Paper, 1-40.

    Bayes, T., and Price R. (2003). An Essay towards Solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London, 53, 370-418.

    Beer, F.M. (1997). Estimation of Risk on the Brussels Stock Exchange: Methodological Issues and Empirical Results. Global Finance Journal, 8, 83-94.

    Blume, M.E. (1971). On the Assessment of Risk. Journal of Finance, 26, 1-10.

    Blume, M.E. (1975). Betas and Their Regression Tendencies. Journal of Finance, 30, 785-795.

    Brailsford, T.J., and Faff, R.W. (1997). Testing the Conditional CAPM and the Effect of Intervaling: A Note. Pacific-basin Finance Journal, 5, 527-537.

    Chen, L., Jiang, G.J., Guanzhong, P., and Zhu, X. (2016). Biases in CAPM Beta Estimation. Advances in Investment Analysis and Portfolio Management, 8, 83-103.

    Cohen, K.J., Hawawini, G.A., Maier, S.F., Schwartz, R.A., and Whitcomb, D.K. (1983). Friction in the Trading Process and the Estimation of Systematic Risk. Journal of Financial Economics, 12, 263-278.

    Diacogiannis, G., and Makri, P. (2008). Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange. International Research Journal of Finance and Economics, 13, 108-122.

    Dimson, E., and Marsh, P. (1983). The Stability of UK Risk Measures and The Problem of Thin Trading. Journal of Finance, 38, 753-783.

    Elton, E. J., Gruber, M. J., Brown, S. J., and Goetzmann, W. N. (2014). Modern Portfolio Theory and Investment Analysis (9th ed.). John Wiley & Sons.

    Estrada, J. (2000). The Temporal Dimension of Risk. The Quarterly Review of Economics and Finance, 40, 189-204.

    Fabozzi, F.J., and Francis, J.C. (1978). Beta as a Random Coefficient. The Journal of Financial and Quantitative Analysis, 13(1), 101-116.

    Fama, E.F., and MacBeth, J.D. (1973). Risk, Return, and Equilibrium: Empirical Tests. Journal of Political Economy, 81, 607-636.

    Ferguson, R.A., and Simaan, Y. (1998). Estimating Beta When the CAPM Is True. The Journal of Performance Measurement, 2(4). 38-55.

    Frankfurter, G.M., Leung, W.K., and Brockman, P.D. (1994). Compounding Period Length and the Market Model. Journal of Economics and Business, 46, 179-193.

    Frazzini, A., and Pedersen, L.H. (2010). Betting Against Beta. Journal of Financial Economics, 111(1), 1-25.

    Genton, M.G., and Ronchetti, E. (2008). Robust Prediction of Beta. Computational methods in financial engineering: Essays in honour of Manfred Gilli (2008th ed.). Springer.

    Graham, J.R., and Harvey, C.R. (1999). The Theory and Practice of Corporate Finance: Evidence from the Field. Journal of Financial Economics, 60(2-3), 187-243.
    Gray, S., Hall, J., Klease, D., and McCrystal, A. (2009). Bias, Stability and Predictive Ability in the Measurement of Systematic Risk. Accounting Research Journal, 22(3), 220-236.

    Groenewald, N., and Fraser, P. (2000). Forecasting Beta: How Well Does the ‘Five‐Year Rule of Thumb’ Do? Journal of Business Finance & Accounting, 27, 953-982.

    Hakan, A., and Hakan, S. (2007). Is a Correction Necessary? for Beta Estimation? Akdeniz University Faculty of Economics & Administrative Sciences Faculty Journal, 7, 110-121.

    Harris, R.D., and Shen, J. (2003). Robust Estimation of the Optimal Hedge Ratio. Journal of Futures Markets, 23, 799-816.

    Hollstein, F. (2020). Estimating Beta: The International Evidence. Journal of Banking and Finance, 121, 105968.

    Hollstein, F., Prokopczuk, M., and Wese Simen, C. (2020). Beta Uncertainty. Journal of Banking and Finance, 116, 105834

    Isakov, D. (1997). Is Beta Still Alive? Conclusive Evidence from the Swiss Stock Market. European Journal of Finance. 5(3), 202-212.

    Karceski, J.J. (2002). Returns-Chasing Behavior, Mutual Funds, and Beta`s Death. Journal of Financial and Quantitative Analysis, 37, 559-594.

    Lee, J., and Jang, S. (2007). The Systematic-Risk Determinants of the US Airline Industry. Tourism Management, 28, 434-442.

    Levi, Y., and Welch, I. (2017). Best Practice for Cost-of-Capital Estimates. Journal of Financial and Quantitative Analysis, 52, 427-463.

    Marshall, B.R., Nguyen, N.H., and Visaltanachoti, N. (2021). Beta Estimation in New Zealand. Pacific-Basin Finance Journal, 70, 101671.

    Martin, R.D., and Simin, T.T. (2003). Outlier-Resistant Estimates of Beta. Financial Analysts Journal, 59, 56-69.

    Pettengill, G.N., Sundaram, S., and Mathur, I. (1995). The Conditional Relation between Beta and Returns. Journal of Financial and Quantitative Analysis, 30, 101-116.

    Ramazan Genay, Faruk Seļuk, and Brandon Whitcher (2002). Systematic Risk and Timescales. Quantitative Finance, 3(2), 108 - 116.

    Scholes, M.S., and Williams, J.T. (1977). Estimating Betas From Nonsynchronous Data. Journal of Financial Economics, 5, 309-327.

    Shi, W., and Xu, Y. (2016). Is Beta Still Useful over a Longer-Horizon?: An Implied Cost of Capital Approach. Working Paper, 1-33.

    Theodossiou, A., Theodossiou, P., and Yaari, U. (2014). Beta Estimation with Stock Return Outliers: The Case of U.S. Pharmaceutical Companies. Journal of International Financial Markets, Institutions and Money, 30, 153-171.

    Vasicek, O.A. (1973). A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas. Journal of Finance, 28, 1233-1239.

    Welch, I. (2021). Simply Better Market Betas. Critical Finance Review, 11(1), 37-64.
    Description: 碩士
    國立政治大學
    國際經營與貿易學系
    110351014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110351014
    Data Type: thesis
    DOI: 10.6814/NCCU202200434
    Appears in Collections:[Department of International Business] Theses

    Files in This Item:

    File Description SizeFormat
    101401.pdf930KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback