English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50807622      Online Users : 861
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/139845
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139845


    Title: 以維度縮減技術為基礎的互動式探索性資料分析平臺
    A web application for interactive visual data analysis based on dimension reduction techniques
    Authors: 吳漢銘
    Wu, Han-Ming
    賴威宇
    Contributors: 統計系
    Keywords: R語言;維度縮減;網頁應用程式;探索性資料分析;視覺化
    R;Dimension reduction;Web application;Exploratory data analysis;Visualization
    Date: 2018-12
    Issue Date: 2022-04-12
    Abstract: 維度縮減技術是探索性資料分析過程中一個很重要的工具。運用維度縮減,擷取資料的特徵,並以統計圖表及視覺化方法,將資料的結構及樣態呈現於低維度空間中,有助於使用者探索潛藏於高維度資料中所包含的訊息。本研究中我們針對現存於R軟體中的多種線性演算法、非線性演算法及使用者自定的維度縮減方法,運用網路應用框架Shiny,配合Plotly開發一個互動式的資料維度縮減視覺化分析平臺,命名為drEDA。它同時具有圖形與圖形間的資料連結及維度縮減評估指標計算等功能。相較於傳統使用R語言所撰寫的靜態分析圖表,本研究所開發的視覺化分析平臺是一個有效的高維度資料探索分析工具。
    Dimensionality reduction (DR) technique is an important tool in the process of exploratory data analysis (EDA). DR can be used to extract the features of data so that the structure and patterns of data can be displayed onto the lower-dimensional subspace through the statistical graphics and visualization methods. DR benefits users to explore the information of a high-dimensional data set. In this study, we use Shiny and Plotly, the well-known web application frameworks, to develop a web-based application, namely drEDA, for interactively exploring the high-dimensional data sets based on the existing DR methods in R such as the linear, the non-linear and the customized algorithms. The GUI of the application contains the functions of linking and the brushing between scatterplots. The reports of the validation indices of DR methods are also implemented. In summary, drEDA is a powerful and an effective tool for high-dimensional data exploration comparing to the traditional static graphical methods.
    Relation: 統計與資訊評論, Vol.18, pp.19-48
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    35.pdf4145KbAdobe PDF2218View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback