English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52044569      Online Users : 535
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139564


    Title: 機器學習對外匯報酬之預測
    Forecast Foreign Exchange Returns with Machine Learning
    Authors: 蔡伯甯
    Tsai, Bo-Ning
    Contributors: 林建秀
    賴廷緯

    蔡伯甯
    Tsai, Bo-Ning
    Keywords: 機器學習
    自編碼器
    主成份分析
    隨機森林
    極限梯度提升樹
    外匯超額報酬
    集成方法
    Machine Learning
    Autoencoder
    PCA
    Random Forest
    XGBoost
    Foreign Exchange Excess Return
    Ensemble Method
    Date: 2022
    Issue Date: 2022-04-01 15:06:21 (UTC+8)
    Abstract: 本研究首先使用機器學習的模型,比較主成份分析(PCA)與自動編碼器(Autoencoder)兩種方式做降維後的資料擬合之結果,並且以測試集的R^2衡量表現,結果顯示,經過自動編碼器預訓練後的資料能更大幅度的提升模型性能。下一步,使用前面訓練好的模型作為弱學習器,以簡單平均的方式做集成,比較三個弱學習器與集成後的預測表現,再以模型預測結果作為買賣訊號來建構外匯投資組合,同時,加入利差策略與動量策略作為比較基準,觀察投資組合的績效表現,根據實驗結果,集成後的投組明顯優於個別機器學習模型,而機器學習模型又優於傳統策略。
    In this study, we compare two different techniques which are principal component analysis (PCA) and autoencoder(AE) for reducing the dimensionality of data prior to modeling, and deploy machine learning models for data fitting to observe their results. Then, we measure performance by R^2 on the test set. The results showed that the data pre-trained by AE can greatly improve the model performance. The next step is to use previously trained models as weak learners to combine them by simple average method and compare its result to weak learners. After that, we adopt the result of model prediction as a trading signal to construct a foreign exchange portfolio. Moreover, we also add traditional strategies which are carry strategy and momentum strategy as the benchmarks to observe the portfolio performance. According to the experimental results, the composite is better than all weak learners, and all weak learners are better than the traditional strategies.
    Reference: [1] 石川、劉洋溢、連祥斌(2020)。因子投資與實踐。北京:電子工業出版社。

    [2] Alkhatib, K., Najdat, H., Hmeidi, L., Shatnawi, M. (2013). Stock Price Prediction Using K-Nearest Neighbor(kNN) Algorithm. International Journal of Business, Humanities and Technology, 3(3).

    [3] Andersen, T.G., Bollerslev, T., Diebold, F.X., & Vega, C. (2002). Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange. The American Economic Association, 93, 38-62.

    [4] Asness, C.S., Moskowitz, T.J., & Pedersen, L. (2013). Value and Momentum Everywhere. Journal of Finance, 68, 929-885.

    [5] Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis: Learning from examples without local minima. Neural networks, 2, 53-58.

    [6] Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S.R. (2019). Prediction the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552-567.

    [7] Breiman, L. (1996a). Bagging Predictors. Machine Learning, 24(2), 123–140.

    [8] Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.

    [9] Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. Wadsworth.

    [10] Carhart, M.M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance, 52, 57-82.

    [11] Chen, T., & Carlos G. (2016). Xgboost: A scalable tree boosting system. A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.

    [12] Clemen, R.T. (1989). Combining Forecasts: A Review and Annotated Bibliography. International Journal of Forecasting, 5, 559–583.

    [13] Ebrahimpour, D.H., & Kouzani, D.A. (2007). FACE RECOGNITION USING BAGGING KNN.

    [14] Fama, E.F.(1984). Forward and spot exchange rates. The Journal of Monetary Economics, 14, 319-338.

    [15] Fama, E.F., & French, K.R.(1992). The Cross-Section of Expected Stock Returns. Journal of Finance, 47, 427-465.

    [16] Fama, E.F., & French, K.R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3-56.

    [17] Fama, E.F., & MacBeth, J. (1973). Risk, return and equilibrium: Empirical tests. The Journal of Political Economy, 81, 607-636.

    [18] Friedman, J.H. (2001). GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE. The Annals of Statistics, 29, 1189-1232.

    [19] George, A. (2012). Anomaly Detection based on Machine Learning: Dimensionality Reduction using PCA and Classification using SVM. International Journal of Computer Applications, 47, 5-8.

    [20] Gu, S., Kelly, B. & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. The Review of Financial Studies, 33, 2223-2273.

    [21] Gu, S., Kelly, B. & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econometrics, 222, 429-450.

    [22] Hasen, L.P., & Hodrick, R.J. (1980). Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis. The Journal of Political Economy, 88, 829-853.

    [23] Hasen, L.K., & Salamom, P. (1990). Neural network ensembles. IEEF Transactions on Pattern Analysis and Machine Intelligence, 12, 993-1001.

    [24] Hiton, G.E. and Salakhutdinov, R.R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 33, 504-507.

    [25] Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Journal of Finance, 48, 65-91.

    [26] Jiang, Z., Ji, R., & Chang, K.C. (2020). A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment. Journal of Risk and Financial Management, 13, 155.

    [27] Jurczenko, E., & Teiletche, J., (2019). Macro Factor Mimicking Portfolios. Available at SSRN 3363598.

    [28] Kelly, B.T., Pruitt, S., & Su., Y. (2018). Characteristics Are Covariances: A Unified Model of Risk and Return. Available at SSRN 3032013.

    [29] Kroencke, T. A., Schindler, F., & Schrimpf, A. (2014). International diversification benefits with foreign exchange investment styles. Review of Finance, 18, 1847-1883.

    [30] Levy, R.A. (1967). Relative Strength as a Criterion for Investment Selection. Journal of Finance, 22, 595-610.

    [31] Lustig, H., Roussanov, N., & Verdelhan, A. (2011). Common risk factors in currency markets. The Review of Financial Studies, 24, 3731-3777.

    [32] Lustig, H., & Verdelhan, A. (2007). The cross-section of foreign currency risk premia and US consumption growth risk. The American Economic Review, 97, 89–117.

    [33] Menkhoff, L., Sarno, L., Shmeling, M., & Schrimpf, A. (2012a). Carry Trades and Global Foreign Exchange Volatility. Journal of Finance, 67, 681-718.

    [34] Menkhoff, L., Sarno, L., Schmeling, M., & Schrimpf, A. (2012b). Currency momentum strategies. Journal of Financial Economics, 106, 660-684.

    [35] Okunev, J., & White, D. (2003). Do Momentum-Based Strategies Still Work in Foreign Currency Markets?, Journal of Financial and Quantitative Analysis, 38(2), 425-447.

    [36] Qian, B., & Rasheed, K. (2010). Foreign Exchange Market Prediction with Multiple Classifiers. Journal of Forecasting, 29, 271-284.

    [37] Qian, X.Y. (2017). Financial Series Prediction: Between Precision of Time Series Models and Machine Learning Methods. arXiv: 1706.00948v3.

    [38] Simpson, M.W., Ramchander, S., & Chaudhry, M. (2005). The impact of macroeconomic surprises on spot and forward foreign exchange markets. Journal of International Money and Finance, 24, 693-718.

    [39] Steele, B.M. (2009). Exact bootstrap k-nearest neighbor learners. Mach Learn, 74, 235-255.

    [40] Struck, C., & Cheng, E. (2019). The Cross-Section of Returns: A Non-Parametric Approach. Available at SSRN 3494141.

    [41] Waskle, S., Parashar, L., & Singh, U. (2020). Intrusion Detection System Using PCA with Random Forest Approach. International Conference on Electronics and Sustainable Communication System, 2020, 803-808.

    [42] Yu, L., Lai, K.K. & Wang, S. (2008). Multistage RBF neural network ensemble learning for exchange rates forecasting. Neurocomputing, 71, 3295-3303.

    [43] Zhang, D., Wang, X., Gao, L., & Gong, Y. (2021). Predict and Analyze Exchange Rate Fluctuations Accordingly Based on Quantile Regression Model and K-Nearest Neighbor. Journal of Physics: Conference Series, 12-16.

    [44] Zhou, Z., & Yu, Y. (2005). Adapt Bagging to Nearest Neighbor Classifiers. Journal of Computer Science and Technology, 20, 48-54.
    Description: 碩士
    國立政治大學
    經濟學系
    108258042
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108258042
    Data Type: thesis
    DOI: 10.6814/NCCU202200371
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    804201.pdf2178KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback