政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139314
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113303/144284 (79%)
造访人次 : 50796141      在线人数 : 529
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/139314


    题名: 基於Kubernetes 高可用集群的節點失效容錯研究 以HTTP Web服務為驗證案例
    The Study of Nodes Fault Tolerance Based on Kubernetes High-availability Clusters:A Pratical Study on HTTP Web Service
    作者: 羅時雨
    Luo, Shih-Yu
    贡献者: 張宏慶
    Jang, Hung-Chin
    羅時雨
    Luo, Shih-Yu
    关键词: 容錯
    節點失效
    容器化平台
    高可用集群
    網絡流量工作負載
    Fault Tolerance
    Kubernetes
    Web Traffic Workload
    Container
    Autoscaler
    日期: 2022
    上传时间: 2022-03-01 18:21:32 (UTC+8)
    摘要: 近年微服務架構、容器化技術普及、以Docker容器為標準化單位的
    軟體封裝,其快速佈署、彈性調整、跨平台運作特性,能讓業界更專注於創新和業務需求、可輕鬆管理底層基礎設施。隨著物聯網、大數據機器學習盛行,得跨主機平行處理大量資料,故當服務發生不可預期中斷時,得維持系統資源可用性與穩定性。
    隨著容器數量增長,Docker公司推出容器的管理平台Docker Swarm管理調度跨主機的容器,依據工作負載去調整其運作規模大小,當容器不可預期停止運作時,Docker Swarm叢集會自動產生新的容器,其確保容器服務高可用性。且在同時Google亦推出Kubernetes,故同時比較以Kubernetes 為基礎的 Horizontal Pod Autoscaler,其會依據節點記憶體目標使用率,自動調整服務Pod個数,提升整體資源利用率。Kubernetes簡化應用程式的管理與佈署,但佈署後其集群內效能未被有效去評估與比較,本研究會針對集群內節點資源配置、參數設定,以Vertical-Pod-Autoscaler、Descheduler、Ingress Controller、Scheduling Framework做優化調整。並再與Docker Swarm 架構比較。驗證叢集中節點發生故障失效,優化整體叢集內Web服務Traffic Workload平均反應時間、最長反應時間、連線數成功率、成功次數、失敗次數 數據結果。
    In recent years , the popularization of the Microservice architeure,and Docker containers, its rapid deployment ,flexible adjustment,and cross-platform operation characteristics,enable enterprise to focus on innovation and business needs,and easily manage infrastructure.With the coming of Internet of Things and Data Machine Learning,a large amount of data be processed across hosts.Thus,When system’service is suddenly interrupted, the availability of resources can be sustained steadily.The Horizontal Pod Autoscaler based on Kubernetes automatically adjust the number of Pods according to the target memory utilization
    of the node , improving the overall resource utilization. Apparently,Kubernetes simplify the management and deployment of pod, but its performance has not been effectively evaluated. The study will focus on the node resource configuration and parameter settings in cluster.Vertical-Pod-Autoscaler, Scheduling Framework, Descheuler, and Ingress Controller makes optimization adjustments.At the same time,compared with the Docker Swarm cluster, When the node fails, the research is implemented to optimize the Web service of the average response time , the longest response time,and the success rate of the number of connection.
    參考文獻: [1] T.Ashwarya, E.Berryman, and M.Konrad, “RecSyncETCD: A FAULT-TOLERANT SERVICE FOR EPICS PV CONFIGURATION DATA*” , 17th Int.Conf. on Acc. and Large Exp. Physics Control Systems ,2019.

    [2] A.Baarzi , G.Kesidis, D.Fleck, and A.Stavrou, “Microservices made attack-resilient using unsupervised service fissioning”.Proceedings of the 13th European workshop on Systems Security, 2020.

    [3] L.Chen , Y.Pan , and R.O.Sinnott , “ Auto-scaling Walkability Analytics through
    Kubernetes and Docker SWARM on the Cloud ”Proceedings of the 10th International Conference on Cloud Computing and Services Science, 2020.

    [4] P.De , S.Caiano , R.Gonçalves ,and R.Morla,“FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO A Load Balancer for Bursting Hadoop-based Network Analysis Jobs,”2015.[Online].Available:https://repositorio-aberto.up.pt/bitstream/10216/79486/2/35642.pdf.

    [5] M. Fukushi , T.Katsuta, and Y.Kurokawa , ” A degradable NoC router for the improvement of fault-tolerant routing performance". Artificial Life and Robotics
    , 25(2), pp.301-307. 2019.

    [6] El Haj Ahmed , F.Gil‐Castiñeira, and Costa‐Montenegro, E.KubCG : A dynamic Kubernetes scheduler for heterogeneous clusters. Software : Practice and Experience
    , 51(2), pp.213-234.2020.

    [7] D.Harris , ”Practical Issues in Vertical Scaling. Linking and Aligning Scores and Scales”, pp.233-251.2007.

    [8] M.Imran, Kuznetsov, K.Dziedziniewicz-Wojcik, A.Pfeiffer, P.Paparrigopoulos, S.Trigazis , T.Tedeschi , and D.Ciangottini, Migration of CMSWEB cluster at CERN to Kubernetes: a comprehensive study. Cluster Computing, 24(4), pp.3085-3099.2021.

    [9] C.Jensen, H.Howard, and R.Mortier , “ Examining Raft’s behaviour during partial
    network failures,”Proceedings of the 1st Workshop on High Availability and Observa-
    ility of Cloud Systems, Apr. 2021.

    [10] C.Joseph, and K.Chandrasekaran,Nature‐inspired resource management and dynamic rescheduling of Microservices in Cloud data centers. Concurrency and Computation: Practice and Experience, 33(17).2021.

    [11] S.Junaid, A.Saeed2 ,R.White1, “Single Point of Failure (SPOF) – a useful concept and mnemonic to reduce reporting errors in cancer imaging”, ECR 2018 EPOS, Jan. 12, 2018.

    [12] J.Li, S.Kulkarni, K.Ramakrishnan, D.Li , Understanding Open Source Serverless
    Platforms. Proceedings of the 5th International Workshop on Serverless Computing- WOSC `19, 2019.

    [13]J.Lawrence,E.Prakash,C.Hewage, “Kubernetes:Essential for Cloud Tansformation
    ” Cardiff School of Technologies, Cardiff Metropolitan University, p4.2021.

    [14] P.Martin, Discovery and Load Balancing. Kubernetes, pp.101-114. 2020.

    [15] V.Medel,C.Tolón,U.Arronategui, R.Tolosana-Calasanz, J.Bañares,and O.Rana
    Client-Side Scheduling Based on Application Characterization on Kubernetes.
    Economics of Grids, Clouds, Systems, and Services, pp.162-176. 2017.

    [16] G.Muntoni, J.Soldani ,A.Brogi, Mining the Architecture of Microservice-Based
    Applications from their Kubernetes Deployment. Communications in Computer and Information Science, pp.103-115.2021.

    [17] D.Ongaro and J.Ousterhout,“In Search of an Understandable Consensus Algorithm
    ,” www.usenix.org, 2014.

    [18] A.M.Potdar, G,S.Kengond, and M.M.Mulla, “Performance Evaluation of Docker Container and Virtual Machine,” Procedia Computer Science, vol. 171,pp.1419–1428, 2020.

    [19] R.Peinl, F.Holzschuher, and F.Pfitzer, “Docker cluster management for the cloud - survey results and own solution” journal of grid computing, 2016.

    [20] M.Sadoon, S.Hamid, H.Sofian, H.Altarturi, Z.H.Azizul, and N.Nasuha, “Fault tolerance in big data storage and processing systems: A review on challenges and solutions,” Ain Shams Engineering Journal, vol. 13, no. 2, p. 101538, Mar.2021.
    [21] G.Sayfan, “Mastering Kubernetes Master the art of container management by using the power of Kubernetes”. Birmingham Packt Publishing,2018.

    [22] R.Scolati, I.Fronza, N.El Ioini, A.Samir, and C.Pahl, “A Containerized Big Data Streaming Architecture for Edge Cloud Computing on Clustered Single-board Devices,” Proceedings of the 9th International Conference on Cloud Computing and Services Science, 2019.

    [23] V.S.Kushwah , S.K.Goyal , “ A Measuring Throughput for Fault Tolerant Based ACO Algorithm under Cloud Computing”:A Comparison Study. International Journal of Engineering & Technology, 7(4.12), p.39., 2018.

    [24] L Suresh, J.Loff, F.Kalim, S.Jyothi,N.Narodytska, L.Ryzhyk,S.Gamage, B.Oki,
    and M.Gasch , Building Scalable and Flexible Cluster Managers Using Declarative
    Programming.2022. [online]Usenix.org.Available at: https://www.usenix.org/conference/osdi20/presentation/suresh

    [25] B.Thurgood, and R.Lennon, “Cloud Computing With Kubernetes Cluster Elastic Scaling. Proceedings of the 3rd International Conference on Future Networks and
    Distributed Systems”. 2019.

    [26] Y.Tong, and M.Kolen, ”Comparisons of Methodologies and Results in Vertical Scaling for Educational Achievement Tests. Applied Measurement in Education”,20 (2), pp.227-253.2007.

    [27] E.Truyen ,B.Lagaisse,W.Joosen, A.Hoebreckx, and C.Dycker, Flexible Migration
    in Blue-Green Deployments within a Fixed Cost .Proceedings of the 2020 6th Interna-
    tional Workshop on Container Technologies and Container Clouds, 2020.

    [28] O.Ungureanu , C.Vlădeanu , and R.Kooij , Kubernetes cluster optimization using
    hybrid shared-state scheduling framework.Proceeding of the 3rd International Confer-
    ence on Future Networks and Distributed Systems, 2019.

    [29] M.Villamizar ,” Infrastructure cost comparison of running web applications in the cloud using AWS lambda and monolithic and microservice architectures”. Institute Of Electrical And Electronics Engineers -07-18, 2016.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    107971018
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107971018
    数据类型: thesis
    DOI: 10.6814/NCCU202200253
    显示于类别:[資訊科學系碩士在職專班] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    101801.pdf5727KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈