政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139048
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51900675      Online Users : 421
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139048


    Title: Data Analysis of the Risks of Type 2 Diabetes Mellitus Complications before Death Using a Data-Driven Modelling Approach: Methodologies and Challenges in Prolonged Diseases
    Authors: 陸行
    Luh, Hsing
    Contributors: 應數系
    Keywords: type 2 diabetes; complication; discrete event simulation; electronic health record
    Date: 2021-08
    Issue Date: 2022-02-10 14:59:55 (UTC+8)
    Abstract: (1) Background: A disease prediction model derived from real-world data is an important tool for managing type 2 diabetes mellitus (T2D). However, an appropriate prediction model for the Asian T2D population has not yet been developed. Hence, this study described construction details of the T2D Holistic Care model via estimating the probability of diabetes-related complications and the time-to-occurrence from a population-based database. (2) Methods: The model was based on the database of a Taiwan pay-for-performance reimbursement scheme for T2D between November 2002 and July 2017. A nonhomogeneous Markov model was applied to simulate multistate (7 main complications and death) transition probability after considering the sequential and repeated difficulties. (3) Results: The Markov model was constructed based on clinical care information from 163,452 patients with T2D, with a mean follow-up time of 5.5 years. After simulating a cohort of 100,000 hypothetical patients over a 10-year time horizon based on selected patient characteristics at baseline, a good predicted complication and mortality rates with a small range of absolute error (0.3–3.2%) were validated in the original cohort. Better and optimal predictabilities were further confirmed compared to the UKPDS Outcomes model and applied the model to other Asian populations, respectively. (4) Contribution: The study provides well-elucidated evidence to apply real-world data to the estimation of the occurrence and time point of major diabetes-related complications over a patient’s lifetime. Further applications in health decision science are encouraged.
    Relation: information, Vol.12, No.8, pp.326
    Data Type: article
    DOI link: https://doi.org/10.3390/info12080326
    DOI: 10.3390/info12080326
    Appears in Collections:[Department of Mathematical Sciences] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    307.pdf5626KbAdobe PDF2226View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback