政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/138940
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113321/144300 (79%)
造访人次 : 51110579      在线人数 : 908
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/138940


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/138940


    题名: 漢諾圖上的哈密頓路徑
    Hamiltonian Walks on the Hanoi Graph
    作者: 呂存策
    CUNCE, LYU
    贡献者: 陳隆奇
    Lung­-Chi Chen
    呂存策
    LYU CUNCE
    关键词: 漢諾圖
    哈密頓路徑
    漸進表現
    Hanoi graph
    Hamiltonian walk
    Asymptotic behaviour
    日期: 2021
    上传时间: 2022-02-10 13:06:31 (UTC+8)
    摘要: 本文給出了 n 階 2 維漢諾圖(又稱漢諾塔圖、河內圖)上哈密頓路徑的數量,其漸進表現是 h(n) ∼ 25×16^n/624 。這類漢諾圖上的哈密頓路徑總數量與起點在最上面的顶點的哈密頓路徑數量的對數的比值漸進至 2。同時,當這類漢諾圖上三個方向的平行邊分別被 x, y, z 這三個數
    加權後,我們也推導出了它們的哈密頓路徑的加權和,其漸進表現為h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13)其中 w =(x + y + z)^2/(xyz)。
    We’ve derived the number of Hamiltonian walks on the two­dimensional Hanoi graph at stage n, whose asymptotic behaviour is given by h(n) ∼ 25×16^n/624 .
    And the asymptotic behaviour the logarithmic ratio of the number of Hamiltonian walks on these Hanoi graphs with that one end at the topmost vertex is given by 2. When the parallel edges in the three directions on these Hanoi graphs are weighted by three numbers, x, y, z, the weighted sum of their Hamiltonian paths is also derived by us, and the asymptotic behaviour of it is given by
    h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13) in which w =(x + y + z)^2/(xyz).
    參考文獻: [1] RM Bradley. Analytical enumeration of hamiltonian walks on a fractal. Journal of Physics A: Mathematical and General, 22(1):L19, 1989.
    [2] Shu­Chiuan Chang and Lung­Chi Chen. Structure of spanning trees on the two­dimensional sierpinski gasket, 2008.
    [3] Shu­Chiuan Chang and Lung­Chi Chen. Hamiltonian paths on the sierpinski gasket, 2009.
    [4] Sunčica Elezović­Hadžić, Dušanka Marčetić, and Slobodan Maletić. Scaling of hamiltonian walks on fractal lattices. Physical Review E, 76(1):011107, 2007.
    [5] Andreas M Hinz, Sandi Klavžar, Uroš Milutinović, and Ciril Petr. The Tower of Hanoi­myths and maths. Springer, 2013.
    [6] Wilfried Imrich, Sandi Klavzar, and Douglas F Rall. Topics in graph theory: Graphs and their Cartesian product. CRC Press, 2008.
    [7] Sandi Klavžar and Uroš Milutinović. Graphs s (n, k) and a variant of the tower of hanoi problem. Czechoslovak Mathematical Journal, 47(1):95–104, 1997.
    [8] Dušanka Lekić and Sunčica Elezović­Hadžić. Semi­flexible compact polymers on fractal lattices. Physica A: Statistical Mechanics and its Applications, 390(11):1941–1952, 2011.
    描述: 碩士
    國立政治大學
    應用數學系
    104751019
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104751019
    数据类型: thesis
    DOI: 10.6814/NCCU202101772
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    101901.pdf495KbAdobe PDF234检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈