政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/138636
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51080743      Online Users : 941
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138636


    Title: Integration of Genetic Programming and TABU Search Mechanism for Automatic Detection of Magnetic Resonance Imaging in Cervical Spondylosis
    Authors: 李博逸
    Lee, Bo-Yi
    Juan, Chun-Jung
    Wang, Chen-Shu
    Chiang, Shang-Yu
    Yeh, Chun-Chang
    Cho, Der-Yang;Shen, Wu-Chung
    Contributors: 資管博四
    Keywords: Cervical Spondylosis;MRI;Genetic Programming;TABU Search;Automatic Detection
    Date: 2021-08
    Issue Date: 2022-01-06
    Abstract: Cervical spondylosis is a kind of degenerative disease which not only occurs in elder patients. The age distribution of patients is unfortunately decreasing gradually. Magnetic Resonance Imaging (MRI) is the best tool to confirm the cervical spondylosis severity but it requires radiologist to spend a lot of time for image check and interpretation. In this study, we proposed a prediction model to evaluate the cervical spine condition of patients by using MRI data. Furthermore, to ensure the computing efficiency of the proposed model, we adopted a heuristic programming, genetic programming (GP), to build the core of refereeing engine by combining the TABU search (TS) with the evolutionary GP. Finally, to validate the accuracy of the proposed model, we implemented experiments and compared our prediction results with radiologist’s diagnosis to the same MRI image. The experiment found that using clinical indicators to optimize the TABU list in GP+TABU got better fitness than the other two methods and the accuracy rate of our proposed model can achieve 88% on average. We expected the proposed model can help radiologists reduce the interpretation effort and improve the relationship between doctors and patients.
    Relation: International Journal of Interactive Multimedia and Artificial Intelligence, Vol.6, No.7, pp.109-116
    Data Type: article
    DOI link: https://doi.org/10.9781/ijimai.2021.08.006
    DOI: 10.9781/ijimai.2021.08.006
    Appears in Collections:[Department of MIS] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    89.pdf2909KbAdobe PDF2222View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback