English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50798206      Online Users : 735
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138383


    Title: 利用深度學習演算法進行磁共振頻譜重建
    Deep learning based MRS reconstruction
    Authors: 江宗諭
    YU, JIANG ZONG
    Contributors: 蔡尚岳
    Shang-Yueh Tsai
    江宗諭
    JIANG ZONG YU
    Keywords: 磁共振頻譜
    深度學習
    重建頻譜
    Date: 2021
    Issue Date: 2022-01-03 16:11:39 (UTC+8)
    Abstract: 最近深度學習技術廣泛的應用在MRS 的研究上,例如使用卷積神經網路CNN
    模型來去除雜訊或者移除基線等等,而本研究主要是在探討使用U-NET 模型來進行大腦頻譜的重建,U-Net 是一種卷積神經網絡(CNN)方法,他可以更好的分割生物醫學影像。先將大腦的模擬頻譜傅立葉轉換成FID 之後進行截斷,如果截斷後留下的點數為8 稱為tFID8,若留下16 的點稱為tFID16,以此類推,在進行傅立葉轉換獲得截斷光譜,藉由這些頻譜來訓練模型,一開始訓練了tFID2048、tFID1024、tFID512、tFID256、tFID128、tFID64、tFID32 、tFID16、tFID8,總共8 個模型,通過觀察不同模型的結果和比較,最終挑選tFID128 和tFID32 這兩個模型應用在活體頻譜上,結果因為水頻譜關係得到不好的結果,為了得到最好的結果,將tFID128 和tFID32 模型進行修改嘗試獲取最好的重建活體頻譜,
    結果顯示在模擬頻譜的重建算是非常成功,但是應用在活體頻譜的重建上就不盡理想,所以在進一步的分析模擬頻譜與活體頻譜的誤差,並且將進行一些修正,並重新訓練,得知是因為模擬頻譜與活體頻譜不夠相似造成還原結果有些差異。
    Reference: [1] Gujar, S. K., Maheshwari, S., Björkman-Burtscher, I., & Sundgren, P. C. (2005). Magnetic resonance spectroscopy. Journal of neuro-ophthalmology, 25(3), 217- 226.
    [2 ] Dager, S. R., Oskin, N. M., Richards, T. L., & Posse, S. (2008). Research applications of magnetic resonance spectroscopy (MRS) to investigate psychiatric disorders. Topics in magnetic resonance imaging: TMRI, 19(2), 81.
    [3] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377.
    [4] Hatami, N., Sdika, M., & Ratiney, H. (2018, September). Magnetic resonance spectroscopy quantification using deep learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 467-475). Springer, Cham.
    [5] Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical systems and signal processing, 151, 107398.
    [6] Birch, R., Peet, A. C., Dehghani, H., & Wilson, M. (2017). Influence of macromolecule baseline on 1H MR spectroscopic imaging reproducibility. Magnetic resonance in medicine, 77(1), 34-43.
    [7] Deep learning based MRS quantification : CNN integrated with water scaling and partial volume correction
    [8] Lee, H., Lee, H. H., & Kim, H. (2020). Reconstruction of spectra from truncated free induction decays by deep learning in proton magnetic resonance spectroscopy. Magnetic resonance in medicine, 84(2), 559-568.
    [9] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. [

    [10] Lee, H. H., & Kim, H. (2019). Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain. Magnetic resonance in medicine, 82(1), 33-48.

    [11] Simpson, R., Devenyi, G. A., Jezzard, P., Hennessy, T. J., & Near, J. (2017). Advanced processing and simulation of MRS data using the FID appliance (FID‐ A)—an open source, MATLAB‐based toolkit. Magnetic resonance in medicine, 77(1), 23-33.
    Description: 碩士
    國立政治大學
    應用物理研究所
    108755007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108755007
    Data Type: thesis
    DOI: 10.6814/NCCU202101736
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    500701.pdf5782KbAdobe PDF2115View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback