Reference: | [1] Gujar, S. K., Maheshwari, S., Björkman-Burtscher, I., & Sundgren, P. C. (2005). Magnetic resonance spectroscopy. Journal of neuro-ophthalmology, 25(3), 217- 226. [2 ] Dager, S. R., Oskin, N. M., Richards, T. L., & Posse, S. (2008). Research applications of magnetic resonance spectroscopy (MRS) to investigate psychiatric disorders. Topics in magnetic resonance imaging: TMRI, 19(2), 81. [3] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. [4] Hatami, N., Sdika, M., & Ratiney, H. (2018, September). Magnetic resonance spectroscopy quantification using deep learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 467-475). Springer, Cham. [5] Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical systems and signal processing, 151, 107398. [6] Birch, R., Peet, A. C., Dehghani, H., & Wilson, M. (2017). Influence of macromolecule baseline on 1H MR spectroscopic imaging reproducibility. Magnetic resonance in medicine, 77(1), 34-43. [7] Deep learning based MRS quantification : CNN integrated with water scaling and partial volume correction [8] Lee, H., Lee, H. H., & Kim, H. (2020). Reconstruction of spectra from truncated free induction decays by deep learning in proton magnetic resonance spectroscopy. Magnetic resonance in medicine, 84(2), 559-568. [9] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. [
[10] Lee, H. H., & Kim, H. (2019). Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain. Magnetic resonance in medicine, 82(1), 33-48.
[11] Simpson, R., Devenyi, G. A., Jezzard, P., Hennessy, T. J., & Near, J. (2017). Advanced processing and simulation of MRS data using the FID appliance (FID‐ A)—an open source, MATLAB‐based toolkit. Magnetic resonance in medicine, 77(1), 23-33. |