政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/138370
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51279980      線上人數 : 882
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 會計學系 > 學位論文 >  Item 140.119/138370
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/138370


    題名: 運用AI預測業務人員之非財務及財務績效:以P公司為例
    Applying AI to Predict Sales Persons’ Non-Financial and Financial Performance: A Case Study of P Company
    作者: 劉睿
    Liu, Rui
    貢獻者: 吳安妮
    Wu, An-Ne
    劉睿
    Liu, Rui
    關鍵詞: 績效評估
    人工智慧
    財務績效
    非財務績效
    機器學習
    決策樹
    資料包絡分析
    Performance Evaluation
    Artificial Intelligence
    Financial Performance
    Non-Financial Performance
    Machine Learning
    Decision Tree
    Data Envelopment Analysis
    日期: 2021
    上傳時間: 2022-01-03 16:04:27 (UTC+8)
    摘要: 本研究運用人工智慧預測業務人員之非財務與財務績效。現如今,愈來愈多的研究機構將人工智慧應用於會計領域,然管理會計領域之人工智慧研究卻少之又少。茲以人工智慧在管理會計領域的研究尚處於萌芽期,吾人該如何將人工智慧應用於本領域尚不清楚。本研究通過將人工智慧與管理會計相結合,展示了管理會計研究該如何開始運用這一有效工具。
    本研究採用個案研究法,設計了一套基於機器學習之決策樹與資料包絡分析的人工智慧系統。由此產生的系統可以利用非財務績效指標來預測業務人員的財務績效,評估業務人員月度非財務與財務目標的完成度,分析標竿員工的行為資料。管理者可以利用這些結果來瞭解內部人員的績效表現,挖掘潛在人才,並藉此幫助員工提高對自身績效的認識,從而優化整體業務效率。
    This study applies artificial intelligence (AI) to predict the non-financial and financial performance of salespeople. Although an increasingly robust body of research employs AI in accounting, the research on artificial intelligence in the field of management accounting is less developed. Due to the nascent state of AI research in management accounting, it is unclear how AI should be applied in the field. By combining management accounting with artificial intelligence, the following paper demonstrates how management accounting research can begin incorporating this efficacious tool.
    Using the case study method, this research designs an AI system based on machine learning decision tree and data envelopment analysis. The resultant system can use non-financial performance indicators to predict the financial performance salespeople, evaluate the degree to which salespeople completed non-financial and financial monthly goals, and analyze the behavioral data of high-performing staff members. Managers can use these results to understand the performance of internal personnel, identify potential talents, and promote the awareness of employees regarding their own performance, thus optimizing overall business efficiency.
    參考文獻: 一、中文部分
    出版圖書
    吳安妮,2019,企業策略的終極答案:用「作業價值管理AVM」破除成本迷思,掌握正確因果資訊,做對決策賺到「管理財」。台北市:臉譜出版。
    張紹勳,2000,研究方法。台中市:滄海書局。
    翻譯作品
    塚本邦尊、山田典一、大澤文孝,2019,東京大学のデータサイエンティ スト育成講座 Pythonで手を動かして学ぶデータ分析,中譯名:東京大學資料科學家養成全書:使用Python動手學習資料分析。莊永裕譯(2020)。台北市:臉譜出版。
    Provost, F., and T. Fawcett. 2013. Data Science for Business: What you need to know about data mining and data-analytic thinking,中譯名:資料科學的商業運用。陳亦苓譯(2016)。台北市:碁峰資訊股份有限公司。
    Raschka, S., and V. Mirjalili. 2017. Python Machine Learning: Machine Learning and Deep Learning with Python. Scikit-Learn, and TensorFlow (2nd ed.),中譯名:Python機器學習。劉立民、吳建華譯(2020)。新北市:博碩文化股份有限公司。
    期刊論文
    田耕銘、洪嘉馨、黃政仁、張深閔,2019,普祺樂實業有限公司-創造價值的契機。管理評論,第38卷第1期,頁45-46。
    吳安妮,2019,進入全自動化及AI預測之作業價值管理(AVM)。人文與社會科學簡訊,第20卷第3期,頁89-92。
    楊春、鄧紅,2005,基於DEA模型的企業員工績效考評研究。價值工程,第6期,頁96-98。
    網際網路
    張彥文,2018,APP+AVM,翻轉大客戶不是好客戶的魔咒。哈佛商業評論(全球繁體中文版),7月號。
    https://www.hbrtaiwan.com/article_content_AR0008078.html
    公文報告
    中華民國經濟部,2015,行政院生產力4.0發展方案:生產力4.0-商業服務業。行政院第3476次院會報告。
    二、英文部分
    出版圖書
    Asimov, I. 1942. I, robot.
    Kaplan, R. S., and A. A. Atkinson. 1998. Advanced Management Accounting (3rd ed.). Hoboken, USA: 3 Prentice-Hall.
    Korstanje, J. 2021. Advanced Forecasting with Python. Maisons Alfort, France: Apress.
    期刊論文
    Abdel-Maksoud, A., F. Cerbioni, F. Ricceri, and S. Velayutham. 2010. Employee morale, non-financial performance measures, deployment of innovative managerial practices and shop-floor involvement in Italian manufacturing firms. The British Accounting Review 42 (March): 36-55.
    Banker, R. D., A. Charnes, and W. W. Cooper. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30 (9): 1078-1092.
    Banker, R. D., G. Potter, and D. Srinivasan. 2000. An empirical investigation of an incentive plan that includes nonfinancial performance measures. The accounting review 75 (1): 65-92.
    Charbuty, B., and A. Abdulazeez. 2021. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends 2 (01): 20-28.
    Charnes, A., and W. W. Cooper. 1984. The non-Archimedean CCR ratio for efficiency analysis: a rejoinder to Boyd and Fare. European Journal of Operational Research 15 (3): 333-334.
    Charnes, A., W. W. Cooper, and B. Golany, L. Seiford, and J. Stutz. 1985. Foundations of DEA for Pareto-Koopmans efficiency empirical production functions. Journal of Econometrics 30 (1): 91-107.
    Charnes, A., W. W. Cooper, and E. Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2 (6): 429-444.
    Charnes, A., W. W. Cooper, and E. Rhodes. 1979. Short communication: measuring the efficiency of decision making units. European Journal of Operational Research 3: 339.
    Chow, C. W., and W. A. Van Der Stede. 2006. The use and usefulness of nonfinancial performance measures. Management accounting quarterly 7 (3): 1-8.
    Donthu, N., and B. Yoo. 1998. Retail productivity assessment using data envelopment analysis. Journal of retailing 74 (1): 89-105.
    Eisenhardt, K. M. 1989. Building theories from case study research. Academy of management review 14 (4): 532-550.
    Hoque, Z., L. Mia, and M. Alam. 2001. Market competition, computer-aided manufacturing and use of multiple performance measures: an empirical study. British Accounting Review 33 (1): 23-45.
    Janaki, M., and M. M. J. Clifford. 2021. A study on the scope of artificial intelligence in accounting. Dogo Rangsang Research Journal 11 (5): 1-8.
    Kao, C. 2009. Efficiency decomposition in network data envelopment analysis: a relational model. European journal of operational research 192 (3): 949-962.
    Lau, C. M., and M. Sholihin. 2005. Financial and nonfinancial performance measures: how do they affect job satisfaction?. The British Accounting Review 37 (4): 389-413.
    Le Guyader, L. P. 2020. Artificial intelligence in accounting: GAAP`s “FAS133”. Journal of Corporate Accounting & Finance 31 (3): 185-189.
    Leitner-Hanetseder, S., O. M. Lehner, C. Eisl, and C. Forstenlechner. 2021. A profession in transition: actors, tasks and roles in AI-based accounting. Journal of Applied Accounting Research 22 (3): 539-556.
    Manoharan, T. R., C. Muralidharan, and S. G. Deshmukh. 2009. Employee performance appraisal using data envelopment analysis: a case study. Research and Practice in Human Resource Management 17 (1): 92-111.
    Prentice, C., S. Dominique Lopes, and X. Wang. 2019. Emotional intelligence or artificial intelligence-an employee perspective. Journal of Hospitality Marketing & Management 29 (4): 377-403.
    Prentice, C., S. Weaven, and I. A. Wong. 2020. Linking AI quality performance and customer engagement: the moderating effect of AI preference. International Journal of Hospitality Management 90: 102629.
    Said, A. A., H. R. HassabElnaby, and B. Wier. 2003. An empirical investigation of the performance consequences of nonfinancial measures. Journal of management accounting research 15 (1): 193-223.
    Scapens, R. W. 1990. Researching management accounting practice: the role of case study methods. The British Accounting Review 22 (3): 259-281.
    Shearer, C. 2000. The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing 5 (4): 13-22.
    Sutton, S. G., M. Holt, and V. Arnold. 2016. “The reports of my death are greatly exaggerated”- artificial intelligence research in accounting. International Journal of Accounting Information Systems 22: 60-73.
    Yin, R. K. 1994. Discovering the future of the case study. Method in evaluation research. Evaluation practice 15 (3): 283-290.
    雜誌報刊
    Eccles, R. G. 1991. The performance measurement manifesto. Harvard business review 69 (1): 131-137.
    Kaplan, R. S., D. P. Norton. (1992, January-February). The balanced scorecard; measures that drive performance. Harvard Business Review, 71-79.
    Kaplan, R. S., D. P. Norton. (1996, January-February). Using the balanced scorecard as a strategic management systems. Harvard Business Review , 75-85.
    網際網路
    Brynjolfsson, E., and A. Mcafee. (2017, July 18). How AI Fits into Your Science Team. Harvard Business Review.
    https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence
    Butler, S. (1863, June 13). Darwin among the machines. Te Herenga Waka-Victoria University of Wellington.
    http://nzetc.victoria.ac.nz/tm/scholarly/tei-ButFir-t1-g1-t1-g1-t4-body.html
    描述: 碩士
    國立政治大學
    會計學系
    108353046
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108353046
    資料類型: thesis
    DOI: 10.6814/NCCU202101739
    顯示於類別:[會計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    304601.pdf5155KbAdobe PDF255檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋